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ABSTRACT 

Gating processes that regulate sensory input into visual working memory (WM) and the 

execution of planned actions share neural mechanisms, suggesting a mutual interaction. In a 

preregistered study (OSF), we examined how this interaction may result in sensory interference 

during WM storage using a delayed-match-to-sample task. Participants (12 male, 20 female)  

memorized the color of a target stimulus for later report on a color wheel. The shape of the 

target indicated which hand they would adjust the color wheel with. During the retention 

interval, an interference task was presented, requiring a response with either the same or 

different hand as the main task. In half of the interference trials, the interfering task cue was 

also colored to introduce visual interference. EEG results showed early motor planning during 

sensory encoding, evidenced by mu/beta suppression contralateral to the responding hand. The 

interference task only impaired WM performance when it included an irrelevant color, 

indicating that the interference effect was primarily driven by the irrelevant sensory 

information. In addition, color reporting in the WM task was biased toward the irrelevant color. 

This was more pronounced when both tasks were performed with the same hand, suggesting a 

selective gating mechanism dependent on motor control processes. This effect was mitigated 

by a control mechanism, which was evident in frontal theta activity, where higher power 

predicted lower bias on the single-trial level. Our findings thus reveal that sensory WM 

updating can be induced by interfering motor actions, which can be compensated by a reactive 

control mechanism. 

 

SIGNIFICANCE STATEMENT 

Working memory is increasingly recognized not just as a passive information storage but as an 

active mechanism that constructs prospective representations to guide future actions. We 

investigated how future-oriented plans regulate the entry of new information for maintenance. 

We found that when a stored memory is linked to a response, it becomes particularly vulnerable 

to interference from sensory input that demands the same response. We also identified neural 

signatures of this interaction where a control mechanism mitigates interference from irrelevant 

information. These findings provide key insights into the fundamental architecture of memory, 

demonstrating for the first time that prospective motor codes not only shape the use of stored 

information but also influence how new information is integrated into working memory. 
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INTRODUCTION 

Working memory (WM) serves a critical function in human cognition by maintaining 

and manipulating task-relevant information (Baddeley, 2003). Recent research has increasingly 

focused on the ‘task-relevant’ aspect of WM, emphasizing its prospective nature (Gunseli et 

al., 2014; Huang, 2015; for reviews see Miller et al., 2018; Olivers & Roelfsema, 2020; Postle, 

2006; van Ede, 2020; Van Ede & Nobre, 2023). The shift towards a prospective view has 

expanded the examination of how sensory representations are maintained and manipulated in 

a bidirectional relationship with prospective action representations (Boettcher et al., 2021; 

Nasrawi et al., 2023; Olivers & Roelfsema, 2020; Rösner et al., 2022; Sahakian et al., 2025; 

Schneider et al., 2017; Trentin et al., 2023). Building on this framework, the present study 

investigates the influence of action planning on WM gating processes, specifically examining 

the extent to which the storage of relevant information in WM is susceptible to interfering 

stimuli. 

 

The prospective view on WM highlights the relationship between sensory and motor 

representations by showing concurrent preparation of motor plans for prioritized WM items 

(Boettcher et al., 2021; Nasrawi et al., 2023; Rösner et al., 2022; Schneider et al., 2017; van 

Ede et al., 2019). In this context, evidence for motor preparation is characterized by the 

suppression of mu/beta oscillatory power (8-14/14-30 Hz, respectively) over the sensorimotor 

cortex contralateral to the responding hand, which can occur concurrently with the attentional 

selection of the target item. And this concurrent motor process affects how information is stored 

in WM. For example, action selection can influence which memory feature is prioritized (Heuer 

et al., 2020) or mediate the level of inter-item biases when multiple items in WM are associated 

with different actions (Trentin et al., 2024).  

 

If motor processes influence how information is stored in WM, might they also regulate 

how new information enters WM during ongoing storage? Such a relationship is plausible, 

given evidence of overlapping neural mechanisms between motor control processes and WM 

input gating, i.e., the regulation of information flow into WM (Chatham & Badre, 2015). 

Therefore, the planning or execution of a motor response might indirectly influence WM's 

susceptibility to new information, either enhancing (open gate) or reducing (closed gate) 

information uptake. Our investigation specifically examines how this input gating process is 

modulated by correspondence between motor representations maintained in WM and motor 
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responses executed during an interfering task. We hypothesize that sensory inputs associated 

with corresponding motor responses are more likely to gain access to WM, suggesting a 

selective gating mechanism that prioritizes information aligned with stored motor plans. 

 

To test this hypothesis, we employed a delayed match-to-sample WM task that required 

reporting the color of a target stimulus (Figure 1). We manipulated motor planning by assigning 

the shape of the target object to indicate the use of either the left or right hand for color report. 

Additionally, we introduced an interference task during the WM storage interval, requiring 

participants to perform a secondary action with either the same or a different hand as used in 

the primary task. In half of the interference trials, the cue during this secondary task was 

colored, allowing us to introduce sensory interference.  

 

Our study was guided by three preregistered hypotheses (OSF).  First, we observed the 

onset of oscillatory correlates of motor planning early during encoding (Hypothesis I), however 

there was no relation to later retrieval performance. Moreover, we showed higher error rates 

after visuomotor interference, with no difference between baseline (no interference) and motor 

interference conditions, indicating that the irrelevant color interfered with WM (Hypothesis II). 

Finally, we observed a higher attraction bias in WM towards the interference color when the 

same hand was used for both tasks (Hypothesis III). This effect was accompanied by an 

increase in frontal theta power following the response to the secondary task, potentially 

reflecting a reactive control mechanism to reduce the impact of task-irrelevant information on 

WM (Rac-Lubashevsky & Kessler, 2015, 2018). 

 

METHODS 

Participants 

A total of 32 (Mage= 23.71; SDage = 2.93; 20 Female) participants participated in the 

experiment, and were compensated with either money (12€ per hour) or course credits. Two 

participants were excluded from further analysis due to their misunderstanding of the 

instructions (i.e., pressing the response buttons already during target presentation), and one 

participant was excluded based on the exclusion criteria detailed below. Additionally, one 

participant’s data was used only for the behavioral analysis due to excessive noise in the EEG 

signal. Thus, the final behavioral analysis included 29 participants while the EEG analyses 

were conducted with 28 participants. 
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We calculated the target number of participants using G*Power software (Faul et al., 

2007). A priori sample size calculations were conducted for a one-tailed paired-samples t-test 

referring to the response correspondence effect on attraction bias (Hypothesis III; see 

Behavioral Analysis section). These calculations employed an alpha level of .05 to control for 

Type I error, with a desired power of 95%. Given the novelty of the effect under investigation 

and the lack of directly comparable studies, we used the effect size (Cohen’s d =  0.71) from a 

study on active vs. passive engagement with a distractor during working memory storage as a 

reference (Saito et al., 2023). This analysis yielded 23 as the minimum number of participants 

to achieve the desired statistical power. Since this study did not align perfectly with our research 

questions, the target number of participants has been increased slightly to account for a 

potentially weaker effect.  

 

To further ensure the robustness of our sample size, we reviewed studies measuring 

mu/beta suppression during motor planning in a WM experiment, where three studies used a 

sample size of 24-26 (Boettcher et al., 2021; Rösner et al., 2022; van Ede et al., 2019). To 

accommodate the counterbalancing of the assignment of stimulus shape to responding hand 

(see Procedure), we determined an even number of 26 participants as the target sample (see 

OSF preregistration). Our final data collection slightly exceeded this target by two datasets 

(i.e., 28 datasets including EEG data) due to inaccurate coordination with the laboratory staff. 

Importantly, conducting the analyses only with the first 26 usable datasets did not alter the 

result patterns. 

 

Data quality is assured by the preregistered exclusion criteria. Participants with an 

accuracy lower than 70% in using the correct hand in the main task were excluded from further 

analyses. Furthermore, participants whose mean absolute error was more than 2 standard 

deviations away from the sample mean were discarded. As indicated above, this led to the 

rejection of one dataset from all further analyses. 

 

Ethics statement 

This study was conducted under the ethics approval of the local ethics committee at the 

Leibniz Research Centre for Working Environment and Human Factors and in accordance with 

the Declaration of Helsinki. 

 

Apparatus, stimuli, and procedure 
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The experiment was conducted using a ViSaGe MKII Stimulus Generator (Cambridge 

Research Systems, Rochester, UK) and presented on a 22-inch CRT screen (resolution: 

1024x768, refresh rate: 100 Hz) in a dimly lit, electrically shielded experiment room. The 

paradigm was prepared and coded on Lazarus IDE with free Pascal. Responses were collected 

via two response knobs. These knobs were constructed from 3D-printed material, covering two 

rotary encoders attached to an Arduino processor (Arduino, Lombardia, Italy). The knobs could 

be rotated continuously, and the rotational data were decoded by the two rotary encoders and 

transmitted to the experimental setup using Arduino. The minimum step size of the encoder 

rotation corresponds to 2° on the color wheel. The experiment consisted of 1200 trials in 10 

blocks. There was a short break of ~2 minutes between the blocks and a longer break of ~5-10  

minutes halfway through the experiment. 

 

For stimulus presentation, 180 colors were sampled from HSV color space. The 

saturation and the value were kept constant (S=.85, V=.9). According to the gradual change in 

hue (from 1 to 360, 2 degrees per step), 180 colors were sampled at equal distances. Each 

sample color was used as the target color 6 to 7 times. The sampled 180 colors were then placed 

on a visual circle to prepare a color wheel (the probe) in each trial. The orientation of the color 

wheel was randomized to prevent a re-coding of color into a spatial location on the color wheel.  

 

Before the experiment, all participants completed a handedness questionnaire (Oldfield, 

1971) to assess their dominant hand. All participants were classified as right-handed. Due to 

the nature of the experimental task, their color vision was evaluated via the Ishihara Test for 

Color Blindness.  

 

Participants were asked to complete a delayed match-to-sample WM task in each trial 

(see Figure 1). First, they were shown a target item centered on the screen to remember its color 

until the end of the trial. The target was presented as either a square or a diamond shape (1.83° 

x 1.83°) at the center of the screen. The shape of the target item informed participants whether 

to use their right or left hand for color report (e.g., right hand for square, left hand for diamond). 

Shape-hand assignment was counterbalanced across participants. The target presentation was 

followed by a fixation cross (0.44° x 0.44°) for 900ms. Then, participants were presented with 

the interference period for 1500ms. What participants encountered in the interference period 

differed across three conditions: motor interference, visuomotor interference, and baseline.  
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In the motor interference condition (400 trials), we presented a gray arrow as a cue 

which either pointed to right or left (HSV: 0, 0, 0.5; side length: 1.83°). Participants were 

instructed to click the response knob on the side the arrow pointed to as quickly as possible. In 

the visuomotor interference condition (400 trials) participants were instructed to do the same 

task, but this time the cue color varied. The cue color was 60-90 degrees away from the target 

color on the color wheel. The level of difference was preferred to maximize the interference 

effect (Saito et al., 2023). Thus, the color of the cue added a visual interference aspect to this 

condition. The varying colors of the visuomotor interference did not create an Oddball-like 

effect (Polich & Margala, 1997; Reed et al., 2022), as shown by the comparison of the event-

related potential (ERP) between the visuomotor and motor interference conditions (Text S2; 

Figure S2). In the baseline condition (400 trials), participants were shown a gray arrow which 

pointed either upwards or downwards. In this condition, they were expected to ignore the arrow 

and respond only to the presentation of the later memory probe. All conditions were presented 

in a randomly interleaved manner throughout all trials. Regardless of the condition or 

participants' response times to the interference task, the cues remained on the screen for 

1500ms. 

 

Following this interference period, participants were presented with another fixation 

cross for 500ms. Then they were instructed to indicate the memorized color on a color wheel 

(diameter: 5°; thickness: 1°) by rotating the response knob which had been indicated by the 

shape of the target item at the beginning of the trial. By rotating the knob, participants moved 

a small arrow (a trapezoid, height: 0.95°; bottom 0.38°; top: 0.23°)  over the color wheel to 

select the desired color. The color of the arrow (or cursor) dynamically updated as it moved 

along the wheel, matching the currently selected color to facilitate accurate selection. To 

finalize their response, participants were required to press the knob after having completed 

their color adjustment. Each trial allowed participants a maximum of three seconds to complete 

their response. If the participant did not press the knob within this time frame, the last color 

indicated by the cursor was automatically recorded as the given response. 
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Figure 1. Illustration of the experimental procedure. Participants completed a delayed match-to-
sample task, and the response hand was manipulated. The color of the target had to be remembered for 
later report, while its shape indicated which hand to use for that. Color report was done by adjusting a 
color wheel to display the target color through rotating one of two response knobs. During the 
maintenance phase, participants performed an interference task requiring a response to the direction of 
a central cue (pressing the left vs. right knob) that either corresponded or did not correspond to the hand 
used in the main task. In half of the interference trials, the interference cue was colored, introducing 
visual interference. In the baseline condition (cue pointing up or down), there was no response required 
during maintenance.  
 

Behavioral Analyses 

Registered analysis 

Only trials in which participants responded to both the main task and the interference 

task using the cued hand were included in the behavioral analysis. In each trial, the absolute 

difference between the given response and the target color was calculated as an error (relative 

to their position on the color wheel).  

 

For all behavioral analyses, we provide both frequentist and Bayesian statistics. In 

Bayesian repeated measures ANOVAs, the BF₁₀ value represents the comparison of the tested 

model (with a given main effect) against the null model. When analyzing interactions, the null 

model includes the main effects (Bergh et al., 2020). 

 

+ + + 
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For Hypothesis II (see above), absolute errors were averaged for each condition to 

reveal the magnitude of the interference effect. We expected to see more interference when the 

interfering task had an irrelevant visual feature (visuomotor condition), compared to the motor 

interference condition. To test the difference between different types of interference and their 

relation to the baseline condition, we conducted a one-way ANOVA with three levels 

(visuomotor interference, motor interference, baseline). All p-values from the multiple 

comparisons following the ANOVA were Holm adjusted.  

 

Hypothesis III focused on how the WM representation is biased by the interfering visual 

object in the visuomotor interference condition. To examine this effect, we calculated the 

attraction bias. Since the effect is calculated relative to the interference color, this could only 

be realized in the visuomotor interference condition. In each trial, an attraction bias was 

assumed if the reported color lay in the direction of the interference color on the color wheel. 

The opposite case is considered a repulsion bias (Chunharas et al., 2022). For analyzing this 

bias, each error value between the actual and the reported color was assigned a positive or a 

negative value, depending on whether there was a shift in the direction of or against the position 

of the interference color. Then, we calculated the average of assigned errors for each condition 

to determine the bias terms for each participant. We expected to observe a stronger attraction 

bias when the main and secondary tasks were executed with the same hand (corresponding 

condition) than with different hands (non-corresponding condition). Therefore, we conducted 

a one-tailed paired-samples t-test between the bias of the compatible and incompatible 

visuomotor interference conditions. Final statistical tests of behavioral analyses were 

conducted in JASP (Love et al., 2019), after transferring processed data from MATLAB, unless 

stated otherwise. 

 

Exploratory analysis 

To assess the effect of different types of interference on WM representations, we 

compared the precision across conditions for each participant. For this analysis, errors were 

signed as positive if they were clockwise from the target color, and negative if they were 

counterclockwise. We then calculated the standard deviation (SD) of the signed errors for each 

condition separately for each participant and defined precision as 1/SD. As in Hypothesis II, 

we conducted a one-way repeated measures ANOVA with three levels (visuomotor 

interference, motor interference, baseline). 
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Furthermore, we compared response times (RT) and accuracies in the interference task. 

We aimed to investigate whether differences in hand correspondence conditions were related 

to task difficulty or complexity. Our assumption was that if no such differences existed, there 

would be no variation in RTs or accuracies between the corresponding and non-corresponding 

conditions. We compared both RTs and accuracies using a 2x2 one-way ANOVA 

(motor/visuomotor interference, corresponding/non-corresponding response hand).  

 

EEG recording, preprocessing and analyses 

Recording 

EEG was recorded with 64 Ag/AgCI passive electrodes (Easycap Gmbh, Herrsching, 

Germany) with a sampling rate of 1000 Hz. NeurOne Tesla AC amplifiers (Bittium Biosignals 

Ltd, Kuopio, Finland) were used for data collection with a 250 Hz low-pass filter. We used the 

FCz channel as the reference and AFz as the ground electrode position.  

 

Preprocessing 

We used MATLAB (R2023b, Mathworks, Natick, USA), the ERPLAB toolbox (Lopez-

Calderon & Luck, 2014), and the EEGLAB toolbox (Delorme & Makeig, 2004) for the analysis 

of the EEG data. First, a high-pass filter with a 0.1 Hz threshold and a low-pass filter with a 40 

Hz threshold were applied using an IIR Butterworth filter via the ERPLAB Toolbox's 

pop_basicfilter (default order: 3*(sampling rate/low cut off)) function. After filtering, channels 

with dense artifacts were rejected using the pop_rejchan function (kurtosis threshold: 15), an 

automated process provided by EEGLAB. Frontal electrodes were excluded from this rejection 

procedure to maximize the capture of eye-related variance in the subsequent independent 

component analysis (ICA). Following channel rejection, the data were re-referenced by setting 

the average of all channels as the new reference. The steps between re-referencing and ICA 

were performed only as preparation for ICA. After calculating the IC weights, the pipeline 

reverted to the re-referencing stage, where the IC weights were applied to the re-referenced 

data, disregarding the intermediate steps. 

 

ICA specific steps and IC rejection. After re-referencing, the data were downsampled 

to 200 Hz and high-pass filtered with a 1 Hz threshold using a Hamming-windowed sinc FIR 

filter (pop_eegfiltnew, filter order: 661, transition bandwidth: 1 Hz, cutoff frequency at −6 dB: 

0.5 Hz). The data were then epoched, starting 1000ms before stimulus onset and ending 

4400ms after stimulus onset. A baseline correction was applied using the 200ms period prior 
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to stimulus onset. Automated trial rejection was then performed using EEGLAB's pop_autorej 

function (threshold: 500 µV, maximum percentage of rejected trials per iteration: 5). ICA was 

applied following trial rejection. Independent components (ICs) were then identified using the 

ICLabel classifier for EEGLAB, classifying components into categories such as brain, muscle, 

eye movements, heart activity, channel noise, line noise, and "other" (Pion-Tonachini et al., 

2019). ICs with a probability of being eye movement greater than 30%, and with a probability 

of being brain signal less than 10%, were marked for later rejection. 

 

After ICA steps. After IC rejection, the remaining IC information was attached back 

to the re-referenced data, bypassing the ICA preparation stages. The data were then epoched 

from -1000ms to 4400ms, time point zero being the onset of the target stimulus. A baseline 

correction was applied using the 200ms pre-stimulus time window. IC components labeled as 

artifacts were removed. Any remaining noisy trials were rejected using the same automated 

trial rejection method applied during the ICA preparation stages. Finally, missing channels 

were interpolated using the pop_interp function in EEGLAB, with spherical spline 

interpolation, and the data were downsampled to 250 Hz. 

 

Our preprocessing pipeline resulted in rejecting 32 ICs, on average (SD = 6.49). 

Excluding the blink artifacts (which are large deflections), the rejected ICs explained on 

average 17.82% of the variance across all participants (SD = 24.92), including components 

related to muscle activity, heartbeats, line noise, channel noise, and other artifacts. As a result 

of artifact rejection, we had an average of 933.32 remaining trials (SD = 151.51). Remaining 

trial counts per condition were as follows: Visuomotor corresponding (Mean = 143.42, SD = 

16.06), Visuomotor non-corresponding (Mean = 144.5, SD = 16.34), Motor corresponding 

(Mean = 141.50, SD = 14.14), Motor non-corresponding (Mean = 142.75, SD = 17.80), and 

Baseline (Mean = 282.07, SD = 31.24). On average, 63.32 channels remained after 

preprocessing (SD = 1.38). 

 

Time-frequency decomposition 

We first calculated the time-frequency decomposition of the data. For each trial and 

channel, the oscillatory power for each frequency was calculated from 4 to 30 Hz on a 

logarithmic scale in 26 steps. For each frequency in the given spectrum, a complex Morlet 

wavelet was created by tapering a sinusoid (ei2ft) of the given frequency with a Gaussian [(e-

t2/2s2; s is the width of the Gaussian; s = /(2f) corresponds to the number of cycles of wavelet)]. 
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Our zero padded data, and the Morlet wavelets were Fast Fourier transformed (FFT). 

Convolution in TF decomposition was done by multiplying the signal's Fast Fourier transform 

with the Fast Fourier transform of a complex Morlet wavelet in each frequency by taking the 

dot product. Then an inverse Fast Fourier transform was applied to get the time-domain result. 

We applied a baseline normalization by averaging the -400ms to -100ms time interval in all 

trials and divided each trial by this averaged value and converted the measurement to decibel 

(dB).  

 

Registered analysis 

To explore the first part of Hypothesis I, which predicts the onset of motor planning 

during the visual encoding and early maintenance phase of to-be-memorized colors, we 

calculated contralateral mu/beta suppression following target presentation. This refers to the 

suppression of ∼8-30 Hz activity on the side opposite to the hand being used for a response in 

the main task, measured over the centro-parietal EEG channels (C3, C4, CP3, CP4) (Rösner et 

al., 2022). Previous research has established the contralateral mu and beta suppression as a 

signature of action planning (Boettcher et al., 2021; Nasrawi et al., 2023; Rösner et al., 2022; 

Schneider et al., 2017; van Ede et al., 2019). 

 

First, we calculated both contralateral and ipsilateral power across all time points and 

frequencies by assigning channels regarding their position to the main task response hand. 

Contralateral power was always derived from the channels on the side opposite to the 

responding hand for the main task in each trial. This analysis focused on the encoding and 

maintenance stage prior to interference, defined as the period from 0ms (target stimulus onset) 

to 1400ms (interference cue onset). Since no experimental conditions could have had an 

influence on EEG response in this time interval, we averaged all trials across conditions for 

each participant. Lateralization in oscillatory power was calculated as the contralateral-minus-

ipsilateral difference. To determine whether there was significantly stronger suppression on the 

contralateral side, we performed a cluster-based permutation test (CBPT). This procedure 

began by comparing contralateral minus ipsilateral oscillatory power to zero using a one-

sample t-test at each time and frequency point, identifying significant points where p < .05. We 

then randomly assigned the sign (positive or negative) of the difference for each participant’s 

data points across 1000 permutations, creating a distribution of permuted significant cluster 

sizes. Clusters from the original data that were larger than the 95th percentile of the permuted 
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clusters were considered significant. For the significant cluster, we calculated Cohen’s d for 

each datapoint and reported the maximum and average effect size for the cluster. 

  

Hypothesis I also predicts that greater contralateral mu/beta suppression during the 

encoding stage will be associated with higher WM accuracy (Boettcher et al., 2021; Nasrawi 

et al., 2023). To test this hypothesis, we used a median split approach for each condition 

separately. First, we calculated the median error value (based on absolute errors) for each 

participant. Then, for each condition, we calculated the average contralateral mu suppression 

for trials where the error was below the median and for trials where the error was above the 

median. To determine whether there was a significant difference in contralateral mu/beta 

suppression between the below-median and above-median trials, we applied the same CBPT 

procedure explained above. This test compared the two performance conditions over time (0-

1400ms), conducted separately for each experimental condition. The aim was to identify any 

time-frequency clusters where a persistent and significant difference in contralateral 

suppression occurred between the below- and above-median trials.  

 

Exploratory Analysis 

While the prior analyses address motor planning processes during the encoding and 

maintenance phase of visual information in WM prior to interference, we also investigated to 

which extent the presentation of an irrelevant color affected the re-focusing on primary task 

information after completion of the secondary task. Prior investigations have revealed that this 

process can be tracked by the suppression of oscillatory power in the alpha frequency range at 

posterior electrodes (Woodman et al., 2022). Therefore, posterior oscillatory power was 

calculated as the average oscillatory power at the Oz, O1, O2, Pz, PO3, and PO4 channels. For 

the between-condition comparison, we applied a CBPT as explained above. The two 

interference conditions (motor, visuomotor) were compared against the baseline condition and 

against each other during the interference interval (1400-3400ms after target presentation; see 

Figure 3B-C). We did not average over the alpha band (8-12 Hz) to see the distribution of the 

effect across frequencies more clearly; however, we expected the effect to be centered around 

alpha.  

 

Given that the analysis of posterior oscillatory power showed differences between the 

visuomotor and motor interference conditions (see Figure 3C), we aimed to examine the time 

course of this difference concerning the secondary task response. This approach allowed us to 
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determine whether the onset of the difference aligned with the secondary task response, which 

would prove that it is rather about the refocusing on the visual content from the primary WM 

task than about the visual processing of the secondary task cues. To achieve this, we calculated 

the oscillatory power time-locked to the response to the secondary task. After the regular time-

frequency decomposition, we adjusted the timeline of each trial to be centered around the 

response to the secondary task. Similar to the analyses of posterior oscillatory power time-

locked to secondary task cue onset, we calculated the average over trials for each condition and 

each subject. We then performed the same comparisons as with the stimulus-onset-locked 

posterior alpha analysis from 700ms prior to 700ms after the response (Figure 3D; not 

including the baseline condition since there was no secondary task response).  

 

In the above analyses, we conducted all examinations using pre-selected channels as 

regions of interest to investigate specific attentional and motor planning mechanisms. 

However, none of these analyses directly addressed the EEG correlates as a function of 

Hypothesis III (see Results), where we demonstrate the effect of hand correspondence on WM 

gating. Therefore, we further compared the corresponding and non-corresponding visuomotor 

conditions in an exploratory manner. First, we averaged the time-frequency decomposition for 

each condition for every participant, and we conducted another CBPT including all channels, 

all frequency bands and the time interval following interference presentation (1400-3400ms) 

across participants. To be able to explore the differences over all channels, we used the 

FieldTrip (Oostenveld et al., 2011) CBPT protocol. For the acquisition of the statistics, the 

ft_freqstatistics function was used (estimation method: Monte-Carlo, cluster correction, alpha: 

.05, t-statistics, cluster formation approach: t-sum (default), minimum number of channels for 

cluster formation: 2, false alarm rate: .05, number of randomizations 5000). For the calculation 

of neighboring channels, distances between channels were determined by the automated 

FieldTrip procedure. Due to the t-sum approach used in the procedure, t-values were summed 

for each cluster, and clusters from each permutation were distributed according to their t-sum 

values. The actual clusters with a t-sum higher than 95 percent of permuted clusters was 

considered significant. 

 

To achieve a meaningful distribution of channel contributions to the observed effects, 

a procedure from Ülkü et al. (2024) was adapted. The number of significant data points from 

each channel was divided by the number from the channel with the highest number of 

significant data points, creating a value representing the relative contribution of each channel. 
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Channels scoring more than 0.7 were considered part of the identified cluster. Significant 

clusters in the time-frequency domain were displayed in a contour map, along with the 

contributing channels. 

 

Our exploratory analysis revealed a frontal theta difference between the corresponding 

and non-corresponding visuomotor interference conditions at the end of the interference cue 

presentation window (see Results). Further, we aimed to explore whether this TF pattern 

correlates with the strength of the attraction bias on a trial-by-trial basis. To calculate this, we 

conducted a correlation test, computing Pearson's correlation coefficient between each time-

frequency power point and the attraction bias across all trials. We then applied Fisher’s z-

transformation, which involves calculating the inverse hyperbolic tangent of the coefficient 

distribution. This produced a matrix of time points x frequencies for each subject, each channel, 

and each condition (only sub-conditions of the visuomotor interference condition) with Fisher 

z values. We then averaged the frontal channels AF3, AF4, F1, F3 and F5 which were provided 

by the previous analysis as the biggest contributors of the theta effect observed (Figure 4B) and 

conducted a CBPT against zero for both conditions.  

 

RESULTS 

Behavioral results 

Effects of interference on working memory task performance 

We conducted a repeated measures ANOVA with three levels of interference type 

(motor interference, visuomotor interference, baseline) to determine whether adding a visual 

feature (the color of the interference task cue) interferes with the main task WM representation 

(Hypothesis II). We analyzed absolute average errors across conditions for each participant. 

Results indicated a main effect of interference type, F(2, 56) = 35.35, p < .001, η² = .558, 

BF10=5.48x108. Post hoc comparisons revealed that visuomotor interference led to significantly 

higher errors compared to both the motor interference (t(28) = 7.551, p < .001, d = 0.718, 95% 

CI [2.933 1.488], BF10=6.24x105) and the baseline condition (t(28) = 6.981, pholm< .001, d = 

0.664, 95% CI [2.766 6.981], BF10=1.51x104). No significant difference was found between 

the motor interference and the baseline condition (t(28) =0.570, pholm = .571, d = 0.054, 95% 

CI [0.889 -0.556], BF10=0.24).  

 

We also examined the effect of corresponding vs. non-corresponding motor features 

between the main task and the interference task on behavioral performance to observe if shared 
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motor features affect the handling of secondary tasks during WM storage. For this analysis, we 

used two factors: interference type (motor, visuomotor) and whether the response hands were 

corresponding or non-corresponding between tasks. To achieve this, we conducted a 2x2 

repeated-measures ANOVA. Results showed a main effect of interference type (as it was shown 

in the previous analysis, F(1,28) = 59.831, p < .001, η² = .447 , BF10=7.23x105) and a main 

effect of response-hand correspondence (F(1,28) = 5.371, p =.028, η² = .04, BF10=2.18), with 

no significant interaction (F(1,28) = 0.018, p =.895, η² = 5.87x10-6, BF10=0.33). Post hoc 

testing indicated that when the hands used for the tasks were non-corresponding, WM accuracy 

was lower (t(28) = 2.137, pholm = .028, d= 0.207, %95 CI [0.077 1.244], BF10=4.4). This shows 

the effect of an interrupting task was slightly stronger when the two responding hands did not 

correspond between tasks.  

 

Additionally, we tested whether the type of interference or the hand correspondence 

had an effect on the probability of using the correct hand for the main task by 2x2 repeated 

measures ANOVA (visuomotor/motor; corresponding/non-corresponding). Our results showed 

neither a main effect of interference type (F(1,28) = 1.417, p =.244, η² = .006, BF10=0.35), nor 

hand correspondence (F(1,28) = 2.518, p =.124, η² = .058, BF10=0.93) nor an interaction  

(F(1,28) = .204, p =.655, η² = .001, BF10=0.308). 

 

Effects of interference on precision 

We conducted a similar analysis on WM precision (1/SD; see methods section). The 

comparisons of precision yielded results consistent with those of accuracy, revealing a main 

effect of interference type (F(2, 56) = 12.915, p < .001, η² = 0.316, BF10=769.9). Specifically, 

precision was lower in the visuomotor interference condition than the motor interference (t(28) 

= 4.54, pholm < .001, d = 0.573, 95% CI [0.204 0.942], BF10=1803.5). However, precision in the 

motor interference condition did not differ from the baseline condition (t(28) = 0.299, pholm 

=.76, d = 0.038, 95% CI [-0.278 0.354], BF10=0.205).  

 

Next, we examined the effect of hand correspondence in relation to the interference 

type. The analysis demonstrated a significant main effect of interference type, (F(1, 28) = 

32.247, p < .001, η² = 0.252, BF10=2362.71). Additionally, we observed a significant effect of 

hand correspondence (F(1, 28) = 5.043, p =.033, η² = 0.055, BF10=1.725), with no significant 

interaction (F(1, 28) = 0.367, p =.055, η² = 0.002, BF10=0.28). The effect of hand 

correspondence suggested that precision was slightly lower when the hands did not correspond 
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between the main task and the interference task (t(28) = 2.24, pholm =.033, d = 0.276, 95% CI 

[0.016 0.536], BF10=2.88). 

 

Working memory gating and hand correspondence 

In Hypothesis III, we predicted that shared motor features between the main and 

secondary tasks would trigger WM gate opening during maintenance, which should lead to an 

encoding of new sensory input. This will lead to an interaction between the color information 

already stored in WM and the task-irrelevant color of the interference task cue. Specifically, 

we expected this effect to manifest as an attraction bias between the interfering color and the 

target color in WM.  

 

To assess whether attraction occurred, we first compared both conditions 

(corresponding and non-corresponding response hands) against zero using a one-tailed one 

sample t-test. The analysis showed that WM representations were attracted to the interfering 

color in both corresponding (t(28) = 6.936, p<.001, d = 1.288, 95% CI [2.427 ∞]; BF10= 

201668) and non-corresponding conditions (t(28) = 6.077, p<.001, d = 1.128, 95% CI [1.534 

∞]; BF10= 24493). 

 

Next, we directly compared attraction biases between corresponding and non-

corresponding response hands in the visuomotor condition using a one-tailed paired-samples t-

test (Figure 2C). Results indicated that when response hands corresponded between the two 

tasks, attraction biases were significantly higher (t(28) = 2.580, p=.008, d = 0.479, %95 [0.370 

∞]; BF10= 6.265).  

 

Interference task response times and accuracy 

We compared the interference task RTs using a repeated measures 2x2 ANOVA (motor,  

visuomotor; corresponding, non-corresponding hand) to see any possible differences in the 

interference task performance as a function of hand correspondence (Figure 2E). Our results 

showed no main effect of interference type (F(1, 28) = 2.526, p = .123, η² = .03, BF10=0.679) 

or hand correspondence (F(1, 28) = 0.109, p = .743, η² = .002, BF10=0.302). While there was 

a significant interaction (F(1, 28) = 5.55, p = .026, η² = .032, BF10=2.99), no post-hoc 

comparisons reached significance (Visuomotor interference: corresponding, non-

corresponding t(28) = 1.509, pholm=.69, d = 0.072, %95 [-0.066 0.209]; Motor interference: 

corresponding, non-corresponding t(28) = -0.94, pholm=1, d =-0.045, %95 [-0.181 0.120]; 
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Corresponding hands: visuomotor, motor t(28) = 2.654, pholm=.64, d = 0.115, %95 [-0.015 

0.244]; Non-corresponding hands: visuomotor, motor t(28) =-0.053, pholm=1, d = -0.002, %95 

[-0.124 0.120]). This makes the interpretation of the interaction rather difficult. 

 

Furthermore, we compared the proportion of correct hand use in the interference task 

(Figure 2D). Our 2×2 repeated measures ANOVA revealed no significant main effects 

(Visuomotor, motor interference: F(1, 28) = 1.417, p = .244, η² = .006, BF10=0.355;  

Corresponding, non-corresponding hands: F(1, 28) = 2.518, p = .124, η² = .058, BF10=0.928) 

and no significant interaction (F(1, 28) = 0.204, p = .655, η² = .001, BF10=0.302). These results 

suggest that the observed difference in attraction bias between corresponding and non-

corresponding conditions were not confounded by variations in task difficulty.  
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Figure 2. Illustration of Behavioral Performance. (*p<.05, **p<.01, ***p<.001) . A–B) These panels 
compare absolute mean errors in the main task. A) The highest error rates occurred in the visuomotor 
interference condition, while motor interference did not differ from baseline. B) Hand manipulation had 
a marginal effect on main task performance. Errors were higher in the non-corresponding interference 
condition. C) The WM representation was drawn toward the interfering color (attraction bias) in both 
corresponding and non-corresponding conditions, with a stronger bias in the corresponding condition. 
D–E) There were no significant differences between conditions in interference task performance. Both 
the proportion of correct hand usage and reaction times (RTs) remained consistent across conditions.   
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EEG 

Contralateral mu/beta suppression  

In line with Hypothesis 1, we tested whether contralateral mu suppression occurred 

during the encoding of visual information into WM prior to the interference. Results showed a 

significant cluster in the contralateral minus ipsilateral oscillatory activity following stimulus 

onset, between 180-1400ms and 6.48-30 Hz (cluster size: 4426, dmax=-1.244, dmean=-0.726; see 

Figure 3A). The suppression was distributed in the mu/beta range and was localized over 

centroparietal regions contralateral to the responding hand in the main task, as expected. This 

finding suggests that motor encoding overlaps with the encoding of sensory information. 

 

For the second part of Hypothesis 1, we also predicted that this motor preparation would 

be predictive of participants' behavioral accuracy, as shown in previous studies (Boettcher et 

al., 2021; Nasrawi et al., 2023). To test this, we split trials into high- and low-performance 

conditions based on each participant’s median accuracy score within each condition. Then, we 

compared averaged high- and low-performance trials using a CBPT for each condition. Our 

results revealed no significant clusters in any condition. Thus, although the mu/beta power 

lateralization before the secondary task onset reflects the encoding of the response side for the 

later WM report, this process did not determine the accuracy or response times (Text S3; Figure 

S3) of this report  

 

Posterior Alpha Suppression 

To investigate whether the re-focusing of attention on the WM representation after an 

interfering task differed between the two interference conditions, we focused on differences in 

oscillatory activity over visual areas. We compared all conditions (motor interference, 

visuomotor interference, baseline) with each other, based on CBPT  from the interference onset 

to the probe onset (1400ms – 3400ms). Results showed that posterior suppression of alpha to 

beta power (~8-30 Hz) was stronger in the visuomotor interference condition than the motor 

interference condition (between 1668-3400ms and 4-30Hz, cluster size=6550, cluster 

threshold=1125.5, dmax= -1.505, dmean=-0.699; see Figure 3C). Oscillatory suppression in the 

motor interference condition was also higher than in the baseline condition (between 1624-

2572ms and 4-27.6Hz, cluster size=2637, cluster threshold=1138.5, dmax=-1.170, dmean=-

0.576).  
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We further analyzed posterior oscillatory activity in a response-locked manner, focusing 

on oscillatory activity time-locked to the responses to the interference task. As shown in Figure 

3D, a clear difference in posterior alpha activity emerged between the motor and visuomotor 

conditions, largely following the interfering task response (between -248-700ms and 4-

30Hz,cluster size=3758, cluster threshold=666, dmax=-1.45, dmean=-0.707). This observation 

suggests that the posterior alpha power differences reflect refocusing on the to-be-reported WM 

representation, rather than differences in processing the interference task. 

 

 
Figure 3. Early Motor Planning, and Reallocation of Attention After Interference. Black outlined 
areas indicate significant clusters identified through CBPT. White dots on each topography represent 
the selected channels used for the comparison. A) As an indication of motor planning, mu/beta 
lateralization (channels: C3, C4, CP3, and CP4; calculated as contra-ipsilateral channels regarding the 
selected hand) begins early, aligning with the target's appearance on the screen. The topography reveals 
that this effect is localized to centro-parietal electrodes. The rectangle frame marks the target 
presentation window (0-500ms). B) Posterior alpha/beta suppression (averaged over Oz, O1, O2, Pz, 
PO3, and PO4) is higher following the motor interference when compared against the baseline 
condition. However, the topography shows that this difference is largest over left and right sensorimotor 
areas. C) Posterior alpha/beta suppression is most pronounced in the visuomotor interference condition. 
The topography shows widespread negativity across the scalp, with a stronger suppression of oscillatory 
power at posterior electrodes. The rectangle frame highlights the interference window (1400–2900ms). 
D) The posterior alpha/beta suppression difference between interference conditions emerges largely 
following the interference task response. The vertical line at 0ms reflects the button press in the 
interference task.  
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Exploratory Analysis: Frontal Theta and Bias Effect 

As an exploratory analysis, we investigated potential oscillatory EEG effects linked to 

the attraction bias differences between the corresponding vs. non-corresponding response types 

in the visuomotor condition (Figure 4A). To this end, we conducted an additional CBPT across 

times, frequencies and channels (for details, see the Methods section). This analysis revealed a 

difference in theta power during the later interval between the presentation of the secondary 

task cue and the memory probe (between 2368-2784ms and 4-8.26Hz, tsum=2094, tcrit=1918, 

dmax=0.75, dmean=0.57). Frontal theta power was higher when the hands used in the main and 

the interference tasks matched in the visuomotor condition. The channels contributing most to 

this effect were AF3, AF4, F1, F3, and F5 (Figure 4A). Notably, there was no evidence of 

differences in posterior oscillatory patterns between the corresponding and non-corresponding 

conditions. This suggests that the sensory information was processed similarly across these 

conditions, ruling out significant variations in early attentional orienting to the irrelevant color 

as the primary cause of the attraction bias effect.  

 

To investigate the predictive relationship between the frontal theta difference and the 

attraction bias effect toward the secondary task cue color, we calculated single-trial correlations 

between time-frequency (TF) data and bias scores for each time point, frequency, and channel. 

A CBPT was then conducted on these correlation scores, restricted to the frontal channels 

identified in the prior exploratory analysis. This effect was examined separately for the 

corresponding and non-corresponding response conditions. 

 

Our analysis revealed that only in the visuomotor corresponding response condition did 

frontal theta power predict bias scores at the single-trial level (Figure 4B). Specifically, a 

negative relationship was observed: higher frontal theta power was associated with a lower 

attraction bias (between 2636-3056ms and 4-7.62Hz, cluster size=689, cluster threshold=489, 

dmax=-1.09, dmean=-0.61). These results suggest that the increase in frontal theta power 

reflects a reactive control mechanism for mitigating secondary task interference. 
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Figure 4. Response-Related Bias Effect and Frontal Theta Power. Outlined areas in the contour plots 
represent significant clusters identified through CBPT. Black rectangle frames represent the interference 
window (1400ms-2900ms). A) An exploratory analysis reveals increased frontal theta activity in the 
late phase of the interference interval in the corresponding visuomotor interference condition compared 
to the non-corresponding condition. The marked channels of the topography plot highlight the key 
contributing channels (AF3, AF4, F1, F3, and F5).  B) In the corresponding visuomotor condition only, 
frontal theta activity (calculated over the contributing channels from Figure 4A) predicts the level of 
attraction bias on a trial-by-trial basis at the end of the interference interval. Higher theta power is 
associated with lower attraction bias. The time-frequency distribution of this effect closely resembles 
the frontal theta differences observed between conditions. 
 

 

DISCUSSION 

In this study, we tested the role of motor processes in WM gating. Our results showed 

that when the planned motor responses for a WM task matched the response required for an 

interference task, the irrelevant visual information presented during the interference 

task influenced later WM report to a stronger extent. This finding suggests that motor control 

processes can modulate the extent to which WM is prone to irrelevant sensory information. 

 

First, there was a main effect of interference type on absolute errors in the WM task. 

As shown in Figure 2A, the increase of errors was linked to the presentation of irrelevant 
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sensory information (visuomotor condition). There was no general increase in errors by 

responding to a secondary task during WM storage (motor condition). This supports the notion 

that irrelevant visual information during maintenance can disturb visual WM representations 

(Lorenc et al., 2021; Rademaker et al., 2015; Saito et al., 2023), at least when this information 

is presented within a sensory object requiring a response. We further observed an effect of hand 

correspondence on absolute errors in the WM task (see Figure 2B). When the interference task 

was done by the non-corresponding hand, the magnitude of absolute errors increased. This 

might indicate that using different hands for the two tasks creates conflict and increased 

cognitive demand, impairing the task performance. 

 

In line with our main hypothesis, our results further revealed higher levels of attraction 

bias to the interfering color during visuomotor interference when the responding hand 

corresponded between the two tasks (see Figure 1C). It is important to note that these two 

behavioral parameters (i.e., absolute angular error and signed errors / the bias) exhibited 

opposite effects of hand correspondence. This supports their different conceptualization: the 

increase of absolute errors with non-corresponding responses reflects a drop of overall task 

(i.e., memory) performance, whereas the increase in the attraction bias reflects a stronger 

representational shift toward the interfering color. This modulation of the attraction bias aligns 

with the view that WM input gating can be influenced by actions (Chatham & Badre, 2015). 

According to this view, such gating adaptations may allow WM to respond dynamically to task-

relevant environmental changes during action execution. This process is thought to be mediated 

by the basal ganglia (BG), which play a dual role in motor control (Cui et al., 2013) and sensory 

gating mechanisms (Slagter et al., 2012). While our study does not provide region/network-

specific evidence for this mechanism, our findings conceptually align with the framework of 

BG-mediated WM gating. This means that when the execution of a certain motor action 

corresponds to motor plans already stored in WM, it may lead to the uptake of sensory 

information into WM resulting in attraction bias. However, it is also possible that the mere 

requirement to respond to the cues in the visuomotor interference task leads to a transfer of the 

interference color into WM, and the representational shift towards the interference color occurs 

at a later stage. In this scenario, the response correspondence effect would reflect a later-stage 

effect during memory storage.  

 

Since we calculated the bias parameter as the average of signed errors based on their 

position relative to the interference color, it was impossible to determine whether the effect was 
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primarily driven by the bias in WM or by swap errors (i.e., misreporting the interference color 

instead of the target). To address this, we compared two WM models (Text S1): Target 

Confusability Competition Model (TCC; Schurgin et al., 2020) and TCC Swap Model 

(Williams et al., 2022); and found that the swap-free model provided a better fit to error 

distributions across participants (Figure S1A). Furthermore, when we estimated a bias 

parameter using the TCC model (Saito et al., 2025), the results replicated an higher attraction 

bias in the corresponding hand condition (Figure S1B). Together, these findings support our 

interpretation of the effect as an attraction bias rather than being driven by swap errors. 

 

   

In order to break down the underlying processes in more detail, we further explored 

how the neural oscillatory patterns are linked to the effect of motor correspondence on WM 

bias. There was higher frontal theta power for the corresponding than for the non-corresponding 

visuomotor interference condition at the end of the interference task interval. This frontal theta 

power predicted the level of attraction bias only in the corresponding visuomotor interference 

condition, with higher theta power associated with a lower attraction bias (see Figure 4B). 

Given the role of frontal theta power in conflict resolution (Cohen & Donner, 2013; Kaiser et 

al., 2022; Nigbur et al., 2011), we interpret this activity as reflecting a mechanism that actively 

mitigates interference arising from action-induced opening of the WM gate. The fact that the 

relationship between theta power and bias in WM is exclusively observed in the corresponding 

condition (Figure 4B)  further demonstrates the increased reliance on top-down control only 

when the response hands match between the tasks. This interpretation aligns with findings by 

Rac-Lubashevsky and Kessler (2015; 2018), who demonstrated that when there is an automatic 

tendency to update WM, but the task requires maintaining existing information, higher theta 

activity is observed.  It is further plausible that this control of interference is related to the 

focusing attention back to WM (de Vries et al., 2018; Gresch et al., 2025; Zickerick et al., 

2021). This assumption is supported by the fact that other oscillatory parameters such as the 

modulations on posterior alpha power (Figure 3D) and the lateralization of the mu/beta power 

(Text S4; Figure S4.) also occur in the same time window. While these oscillatory effects 

reflect different processes, they might have in common that they are temporally linked to the 

resumption of the WM task. 
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Given that the motor plan interacted with the attraction effect by the visuomotor task, 

it must have been initiated before the interference task. In line with this, mu/beta suppression 

contralateral to the responding hand emerged during the presentation of the to-be-memorized 

object (Figure 3A). While some studies have suggested that such early correlates of motor 

planning can predict precision and response times of the WM task (Boettcher et al., 2021; 

Nasrawi et al., 2023), our findings did not support this notion by neither showing an effect on 

accuracy nor response times. However, our study did not allow participants to form precise 

action plans due to the randomization of the color wheel on each trial. While participants knew 

which hand to use, they could not anticipate the exact degree of rotation required. In contrast, 

Nasrawi et al. (2023) and Boettcher et al. (2021) allowed for a better prediction of the motor 

requirements during target report, because the starting orientation of the memory probe was 

fixed, enabling participants to plan the specific amount of rotation required. Additionally in 

terms of response times, participants may have prioritized accuracy over speed given the long 

response window.  

 

Furthermore, we observed differences in posterior alpha/beta activity (~8-30 Hz) 

between interference conditions during the secondary task period (Figure 3C). Most notably, 

suppression of posterior alpha/beta power was stronger in the visuomotor interference 

condition than in the motor interference condition. This difference appeared largely after the 

interference task response (Figure 3D), suggesting that it emerged after the processing of the 

interfering task cue was complete (i.e., when no further sensory processing of the interfering 

task cue was required). The stronger suppression of alpha/beta power after the visuomotor 

interference could therefore indicate greater demands for refocusing attention on the visual 

information stored in WM. Moreover, our results show that the timing of the re-emergence of 

mu/beta lateralization corresponds with the response times in the secondary task (Figure S4). 

These results are in line with Gresch et al. (2025) showing a timely re-orienting of attention to 

WM following the completion of an interrupting task.  

 

Limitations 

One limitation of our study is the absence of a visual interference condition without any 

action requirement. Including such a condition could have clarified whether the observed drop 

in memory performance in the visuomotor condition was driven purely by irrelevant sensory 

input or depended on a required motor response. However, the main focus of the current 

investigation was the interaction between motor processes and sensory interference in WM.  
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Moreover, the additional condition might have allowed us to assess whether the hand 

correspondence effect regarding the increased attraction in the corresponding condition or 

reduced attraction in the non-corresponding condition (or both). Nevertheless, our finding that 

theta power correlated with attraction bias exclusively in the corresponding condition aligns 

with previous reports of increased cognitive control demands during automatic, task-

detrimental WM updating (Rac-Lubashevsky & Kessler, 2015, 2018). 

 

Conclusion 

In this study, we demonstrated that motor processes influence WM susceptibility to 

interference, with corresponding motor demands increasing attraction towards task-irrelevant 

information. To our knowledge, this study provides the first experimental evidence for motor 

processes affecting WM gating, observed at both behavioral and EEG levels. Additionally, we 

proposed that the uptake of irrelevant information into WM is counteracted by a reactive 

control mechanism reflected in frontal theta oscillatory activity, aimed at preserving the storage 

of task-relevant information in WM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 28 

REFERENCES 

 

Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews 

Neuroscience, 4(10), Article 10. https://doi.org/10.1038/nrn1201 

Bergh, D. van den, Doorn, J. van, Marsman, M., Draws, T., Kesteren, E.-J. van, Derks, K., 

Dablander, F., Gronau, Q. F., Kucharský, Š., Gupta, A. R. K. N., Sarafoglou, A., 

Voelkel, J. G., Stefan, A., Ly, A., Hinne, M., Matzke, D., & Wagenmakers, E.-J. 

(2020). A Tutorial on Conducting and Interpreting a Bayesian ANOVA in JASP. 

L’Année Psychologique, 120(1), 73–96. https://doi.org/10.3917/anpsy1.201.0073 

Boettcher, S. E. P., Gresch, D., Nobre, A. C., & van Ede, F. (2021). Output planning at the 

input stage in visual working memory. Science Advances, 7(13), eabe8212. 

https://doi.org/10.1126/sciadv.abe8212 

Chatham, C. H., & Badre, D. (2015). Multiple gates on working memory. Current Opinion 

in Behavioral Sciences, 1, 23–31. https://doi.org/10.1016/j.cobeha.2014.08.001 

Chunharas, C., Rademaker, R. L., Brady, T. F., & Serences, J. T. (2022). An adaptive 

perspective on visual working memory distortions. Journal of Experimental 

Psychology: General, 151(10), 2300–2323. https://doi.org/10.1037/xge0001191 

Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects 

neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752–

2763. https://doi.org/10.1152/jn.00479.2013 

Cui, G., Jun, S. B., Jin, X., Pham, M. D., Vogel, S. S., Lovinger, D. M., & Costa, R. M. 

(2013). Concurrent activation of striatal direct and indirect pathways during action 

initiation. Nature, 494(7436), 238–242. https://doi.org/10.1038/nature11846 

de Vries, I. E. J., van Driel, J., Karacaoglu, M., & Olivers, C. N. L. (2018). Priority Switches 

in Visual Working Memory are Supported by Frontal Delta and Posterior Alpha 

Interactions. Cerebral Cortex, 28(11), 4090–4104. 

https://doi.org/10.1093/cercor/bhy223 

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of 

single-trial EEG dynamics including independent component analysis. Journal of 

Neuroscience Methods, 134(1), 9–21. 

https://doi.org/10.1016/j.jneumeth.2003.10.009 

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical 

power analysis program for the social, behavioral, and biomedical sciences. 

Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146 



 29 

Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between frontal cortex and 

basal ganglia in working memory: A computational model. Cognitive, Affective, & 

Behavioral Neuroscience, 1(2), 137–160. https://doi.org/10.3758/CABN.1.2.137 

Frank, M. J., & O’Reilly, R. C. (2006). A mechanistic account of striatal dopamine function 

in human cognition: Psychopharmacological studies with cabergoline and 

haloperidol. Behavioral Neuroscience, 120(3), 497–517. 

https://doi.org/10.1037/0735-7044.120.3.497 

Gresch, D., Behnke, L., Ede, F. van, Nobre, A. C., & Boettcher, S. E. P. (2025). Neural 

Dynamics of Reselecting Visual and Motor Contents in Working Memory after 

External Interference. Journal of Neuroscience, 45(18). 

https://doi.org/10.1523/JNEUROSCI.2347-24.2025 

Günseli, E., Fahrenfort, J. J., van Moorselaar, D., Daoultzis, K. C., Meeter, M., & Olivers, 

C. N. L. (2019). EEG dynamics reveal a dissociation between storage and selective 

attention within working memory. Scientific Reports, 9(1), 13499. 

https://doi.org/10.1038/s41598-019-49577-0 

Gunseli, E., Meeter, M., & Olivers, C. N. L. (2014). Is a search template an ordinary 

working memory? Comparing electrophysiological markers of working memory 

maintenance for visual search and recognition. Neuropsychologia, 60, 29–38. 

https://doi.org/10.1016/j.neuropsychologia.2014.05.012 

Heuer, A., Ohl, S., & Rolfs, M. (2020). Memory for action: A functional view of selection in 

visual working memory. Visual Cognition, 28(5–8), 388–400. 

https://doi.org/10.1080/13506285.2020.1764156 

Huang, L. (2015). Color Is Processed Less Efficiently Than Orientation in Change Detection 

but More Efficiently in Visual Search. Psychological Science, 26(5), 646–652. 

https://doi.org/10.1177/0956797615569577 

Kaiser, J., Iliopoulos, P., Steinmassl, K., & Schütz-Bosbach, S. (2022). Preparing for 

Success: Neural Frontal Theta and Posterior Alpha Dynamics during Action 

Preparation Predict Flexible Resolution of Cognitive Conflicts. Journal of Cognitive 

Neuroscience, 34(6), 1070–1089. https://doi.org/10.1162/jocn_a_01846 

Kandemir, G., Wilhelm, S. A., Axmacher, N., & Akyürek, E. G. (2024). Maintenance of 

color memoranda in activity-quiescent working memory states: Evidence from 

impulse perturbation. iScience, 27(4), 109565. 

https://doi.org/10.1016/j.isci.2024.109565 



 30 

Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the 

analysis of event-related potentials. Frontiers in Human Neuroscience, 8. 

https://doi.org/10.3389/fnhum.2014.00213 

Lorenc, E. S., Mallett, R., & Lewis-Peacock, J. A. (2021). Distraction in Visual Working 

Memory: Resistance is Not Futile. Trends in Cognitive Sciences, 25(3), 228–239. 

https://doi.org/10.1016/j.tics.2020.12.004 

Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, J., Ly, A., Gronau, Q. 

F., Šmíra, M., Epskamp, S., Matzke, D., Wild, A., Knight, P., Rouder, J. N., Morey, 

R. D., & Wagenmakers, E.-J. (2019). JASP: Graphical Statistical Software for 

Common Statistical Designs. Journal of Statistical Software, 88, 1–17. 

https://doi.org/10.18637/jss.v088.i02 

Miller, E. K., Lundqvist, M., & Bastos, A. M. (2018). Working Memory 2.0. Neuron, 

100(2), 463–475. https://doi.org/10.1016/j.neuron.2018.09.023 

Nasrawi, R., Boettcher, S. E. P., & Van Ede, F. (2023). Prospection of potential actions 

during visual working memory starts early, is flexible, and predicts behavior. The 

Journal of Neuroscience, JN-RM-0709-23. 

https://doi.org/10.1523/JNEUROSCI.0709-23.2023 

Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive 

interference. Clinical Neurophysiology, 122(11), 2185–2194. 

https://doi.org/10.1016/j.clinph.2011.03.030 

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh 

inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-

3932(71)90067-4 

Olivers, C. N. L., & Roelfsema, P. R. (2020). Attention for action in visual working 

memory. Cortex, 131, 179–194. https://doi.org/10.1016/j.cortex.2020.07.011 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open Source 

Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological 

Data. Computational Intelligence and Neuroscience, 2011(1), 156869. 

https://doi.org/10.1155/2011/156869 

Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated 

electroencephalographic independent component classifier, dataset, and website. 

NeuroImage, 198, 181–197. https://doi.org/10.1016/j.neuroimage.2019.05.026 

Postle, B. R. (2006). Working Memory as an Emergent Property of the Mind and Brain. 

Neuroscience, 139(1), 23–38. https://doi.org/10.1016/j.neuroscience.2005.06.005 



 31 

Rac-Lubashevsky, R., & Kessler, Y. (2015). Dissociating Working Memory Updating and 

Automatic Updating: The Reference-Back Paradigm. Journal of Experimental 

Psychology Learning Memory and Cognition, 42. 

https://doi.org/10.1037/xlm0000219 

Rac-Lubashevsky, R., & Kessler, Y. (2018). Oscillatory Correlates of Control over Working 

Memory Gating and Updating: An EEG Study Using the Reference-back Paradigm. 

Journal of Cognitive Neuroscience, 30(12), 1870–1882. 

https://doi.org/10.1162/jocn_a_01326 

Rademaker, R. L., Bloem, I. M., De Weerd, P., & Sack, A. T. (2015). The impact of 

interference on short-term memory for visual orientation. Journal of Experimental 

Psychology: Human Perception and Performance, 41(6), 1650–1665. 

https://doi.org/10.1037/xhp0000110 

Reed, C. L., Siqi-Liu, A., Lydic, K., Lodge, M., Chitre, A., Denaro, C., Petropoulos, A., 

Joshi, J., Bukach, C. M., & Couperus, J. W. (2022). Selective contributions of 

executive function ability to the P3. International Journal of Psychophysiology, 176, 

54–61. https://doi.org/10.1016/j.ijpsycho.2022.03.004 

Rösner, M., Sabo, M., Klatt, L.-I., Wascher, E., & Schneider, D. (2022). Preparing for the 

unknown: How working memory provides a link between perception and anticipated 

action. NeuroImage, 260, 119466. https://doi.org/10.1016/j.neuroimage.2022.119466 

Sahakian, A., Gayet, S., Paffen, C. L. E., & Van der Stigchel, S. (2025). Action 

consequences guide the use of visual working memory. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 51(1), 4–13. 

https://doi.org/10.1037/xlm0001326 

Saito, J., Kolisnyk, M., & Fukuda, K. (2023). Perceptual comparisons modulate memory 

biases induced by new visual inputs. Psychonomic Bulletin & Review, 30(1), 291–

302. https://doi.org/10.3758/s13423-022-02133-w 

Saito, J., Printzlau, F., Yeo, Y., & Fukuda, K. (2025). Working Memory Prioritization 

Changes Bidirectional Interactions with Visual Inputs. OSF. 

https://doi.org/10.31234/osf.io/2f7mp_v2 

Schneider, D., Barth, A., & Wascher, E. (2017). On the contribution of motor planning to the 

retroactive cuing benefit in working memory: Evidence by mu and beta oscillatory 

activity in the EEG. NeuroImage, 162, 73–85. 

https://doi.org/10.1016/j.neuroimage.2017.08.057 



 32 

Schurgin, M. W., Wixted, J. T., & Brady, T. F. (2020). Psychophysical scaling reveals a 

unified theory of visual memory strength. Nature Human Behaviour, 4(11), 1156–

1172. https://doi.org/10.1038/s41562-020-00938-0 

Slagter, H. A., Tomer, R., Christian, B. T., Fox, A. S., Colzato, L. S., King, C. R., Murali, D., 

& Davidson, R. J. (2012). PET evidence for a role for striatal dopamine in the 

attentional blink: Functional implications. Journal of Cognitive Neuroscience, 24(9), 

1932–1940. https://doi.org/10.1162/jocn_a_00255 

Tai, L.-H., Lee, A. M., Benavidez, N., Bonci, A., & Wilbrecht, L. (2012). Transient 

stimulation of distinct subpopulations of striatal neurons mimics changes in action 

value. Nature Neuroscience, 15(9), 1281–1289. https://doi.org/10.1038/nn.3188 

Trentin, C., Falanga, L., Jeske, J., Olivers, C. N. L., & Slagter, H. A. (2024). Action 

similarity warps visual feature space in working memory. OSF. 

https://doi.org/10.31234/osf.io/spd78 

Trentin, C., Slagter, H. A., & Olivers, C. N. L. (2023). Visual working memory 

representations bias attention more when they are the target of an action plan. 

Cognition, 230, 105274. https://doi.org/10.1016/j.cognition.2022.105274 

Ülkü, S., Getzmann, S., Wascher, E., & Schneider, D. (2024). Be prepared for interruptions: 

EEG correlates of anticipation when dealing with task interruptions and the role of 

aging. Scientific Reports, 14(1), 5679. https://doi.org/10.1038/s41598-024-56400-y 

van Ede, F. (2020). Visual working memory and action: Functional links and bi-directional 

influences. Visual Cognition, 28(5–8), 401–413. 

https://doi.org/10.1080/13506285.2020.1759744 

van Ede, F., Chekroud, S. R., Stokes, M. G., & Nobre, A. C. (2019). Concurrent visual and 

motor selection during visual working memory guided action. Nature Neuroscience, 

22(3), Article 3. https://doi.org/10.1038/s41593-018-0335-6 

Van Ede, F., & Nobre, A. C. (2023). Turning Attention Inside Out: How Working Memory 

Serves Behavior. Annual Review of Psychology, 74(1), 137–165. 

https://doi.org/10.1146/annurev-psych-021422-041757 

Williams, J. R., Brady, T. F., & Störmer, V. S. (2022). Guidance of attention by working 

memory is a matter of representational fidelity. Journal of Experimental Psychology: 

Human Perception and Performance, 48(3), 202–231. 

https://doi.org/10.1037/xhp0000985 

Woodman, G. F., Wang, S., Sutterer, D. W., Reinhart, R. M. G., & Fukuda, K. (2022). Alpha 

suppression indexes a spotlight of visual-spatial attention that can shine on both 



 33 

perceptual and memory representations. Psychonomic Bulletin & Review, 29(3), 

681–698. https://doi.org/10.3758/s13423-021-02034-4 

Zhang, M., & Yu, Q. (2024). The representation of abstract goals in working memory is 

supported by task-congruent neural geometry. PLOS Biology, 22(12), e3002461. 

https://doi.org/10.1371/journal.pbio.3002461 

Zickerick, B., Rösner, M., Sabo, M., & Schneider, D. (2021). How to refocus attention on 

working memory representations following interruptions—Evidence from frontal 

theta and posterior alpha oscillations. European Journal of Neuroscience, 54(11), 

7820–7838. https://doi.org/10.1111/ejn.15506 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 34 

Text S1: The models and model fitting 

To determine whether our bias analysis is influenced by swap errors, which means mistakenly 

reporting the interference color, we conducted additional modeling analyses. First, we 

compared the Target Confusability Competition (TCC) Model (Schurgin et al., 2020) with the 

TCC Swap Model (Williams et al., 2022). The models are explained in detail below; however, 

the main difference is that the TCC Swap model estimates the frequency of swap errors in the 

data. We selected this comparison because other swap models in the literature assume equal 

memory strength for the target and interference items. In our study, the interference color is not 

part of the memoranda, making it unlikely that the target and interference share the same 

memory strength. Given this important aspect, we used the TCC Swap which modifies the 

model to estimate different memory strengths for the interference and memory items. We 

compared these two models using Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). For model fits and model comparisons, we used the Maximum 

Likelihood function of MemToolbox (Suchow et al., 2013). As explained below, the model 

comparison indicated that our data’s error distribution is better explained by the TCC model 

without the swap error component. 

 

Target Confusability Competition Model  

As a signal detection-based theory of working memory (WM), the Target Confusability 

Competition Model assumes that responses in a memory task are based on a familiarity signal 

that is, participants select the item that feels most familiar at the time of response.  

 

The model posits that each color on the color wheel has an associated memory signal 

determined by its psychophysical similarity to the target. On each trial, the model assumes that 

the participant chooses the option with the strongest signal. 

 

More formally, the similarity function is denoted as f(𝑥),	and 𝑑′	represents the memory strength 

of the target. The memory signal for each option on the color wheel is drawn from a normal 

distribution with a mean of 𝑑′	 × 	𝑓(𝑥) and unit variance. The final response corresponds to the 

index with the maximum signal value across all colors. As the familiarity function, we used a 

similarity function in color space previously derived from a familiarity judgment task (for 

details, see Schurgin et al., 2020). This can be expressed as: 
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𝑟	~	𝑎𝑟𝑔𝑚𝑎𝑥(𝑋₋₁₇₉, . . . , 𝑋₁₈₀) 

 

Target Confusability Competition + Swap Model  

TCC Swap model is a modification of the model structure explained above. TCC swap model 

first proposed by Williams et al., (2022) to estimate frequency of swap errors.  

 

The modified model estimated four parameters: 𝜃, 𝛽, 𝑑′𝑇, and 𝑑′𝑃. In the model, 𝛽	represents 

the proportion of swap errors (ranging from 0 to 1); and 𝑑′𝑇 and 𝑑′𝑃 correspond to the memory 

strengths for the target and the distractor. Similar to previous memory signal for each option 

on the color wheel is drawn from a normal distribution with a mean of	𝑑′	 × 	𝑓(𝑥)	and unit 

variance, and they allow let (𝑌 − 179,… , 𝑌180) represent the probe distribution with means 

𝑑𝑦	 = 	𝑑′𝑃	 ∗ 	𝑔(𝑦) and unit variance for distribution of distractor selection when there is a 

swap. Then the response can be modelled as: 

 
𝜔	 ∼ 	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛽) 

𝑟	 ∼ 	𝜔	 × 	𝑎𝑟𝑔𝑚𝑎𝑥(	𝑌_{−179}, . . . , 𝑌_{180}	) 	+	(1 − 	𝜔) 	× 	𝑎𝑟𝑔𝑚𝑎𝑥(	𝑋_{−179}, . . . , 𝑋_{180}	) 
 
 

Model Analyses Results 

We compared the goodness of fit measures of two proposed models on the error distribution of 

the visuomotor interference condition. Since we have visual interference only in the visuomotor 

condition, only this condition allowed us to observe possible swap errors or bias in the 

distribution. We compared individual fits by comparing the AIC and BIC scores using paired 

sample t-tests. However, since AIC and BIC scores deviate normality, we also report the 

Wilcoxon test results as a non-parametric alternative. Our results showed that the TCC model 

was a better fit, supported by both AIC (t(28) = -6.092, p < .001, d = -1.131, BF₁₀ = 12704; z= 

4.703, p<.001), and BIC (t(28) = -18.629, p <.001, d =-3.459, BF₁₀= 1915 × 10¹²; z = 4.703, 

p<.001), as indicated in Figure S1A. Lower AIC/BIC scores indicate better fits. 

We conducted the same analysis on signed errors (as explained in the main text, Methods 

section, Registered Analysis: Hypothesis III) by assigning all distractor positions as positive 

and still obtained the same results for AIC (t(28) = -4.862, p < .001, d = -0.903, BF₁₀ = 592.763; 

z= -4.011, p<.001) and BIC (t(28) = -15.920, p < .001, d = -2.956, BF₁₀ = 4.03x1012; z= -4.703, 

p<.001). This indicates that swap errors with the interference color do not explain the error 

distributions of visuomotor interference condition. 
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Then, to further examine our bias comparison results from the main text, we implemented a 

bias parameter using the WithBias() function of MemToolbox (Suchow et al., 2013), allowing 

the TCC model’s estimated distribution to shift (Saito et al., 2025). This way, we estimated the 

shift in the distribution of errors (parameter 𝜇) besides the memory strength. We fitted the 

model to the signed error distributions of each individual in the visuomotor corresponding-

hand and visuomotor non-corresponding-hand conditions. A positive estimate of 𝜇 indicated 

that the distribution is shifted toward the interference color, as errors were assigned negative 

or positive relative to the interference color’s position. 

 

Our model estimates showed the same pattern as the model-free approach (Figure S1B): the 

estimated bias was positive and significantly above zero for both conditions (corresponding: 

t(28) = 8.140, p < .001, d = 1.512, BF₁₀ = 1.737x106; non-corresponding: t(28) = 4=5.406, p < 

.001, d = 1.004, BF₁₀ = 2303 ), and it was higher in the corresponding-hand condition (t(28) = 

3.808, p < .001, d = .707, BF₁₀ = 45.705). 

 

 
 
Figure S1. Model Comparisons and Model-based Bias Estimations. (*p<.05, **p<.01, ***p<.001) 
A) Both AIC and BIC comparisons across participants suggested that the TCC model without swaps fit 
our error distribution better, indicating that our error distribution was not explained by swap errors. B) 
Model-based bias estimations showed the same pattern of bias: both hand correspondence conditions 
exhibited attraction towards the interference color, with a stronger effect observed in the corresponding 
hand condition. 
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Text S2: Event-related potentials (ERPs) 
As explained in the Discussion section, we wanted to see whether there is a surprise-related 

effect in the visuomotor interference condition due to the changing colors of the visuomotor 

cue. This would be possible if, in certain trials, a randomly selected color attracts attention 

because it represents a rare stimulus within the overall experimental procedure. Specifically, 

we explored whether this difference between the motor (only grey cues) and visuomotor 

conditions (variable cue color) induces an oddball effect in the event-related potential (ERP; 

Polich & Margala, 1997; Reed et al., 2022). 

 

To investigate this, we compared the ERPs at electrode Pz across both conditions. ERPs were 

calculated as the activity at Pz following standard preprocessing steps (including baseline 

removal). For each subject, trials were averaged per condition, resulting in time-locked 

amplitude data per condition. We then compared these data using a cluster-based permutation 

test (see Methods section of the main text for CBPT details). Our analysis did not show any 

difference in the ERPs between the visuomotor and motor interference conditions (Figure S2). 

Since both conditions involved the same motor requirements but differed in their visual 

features, we interpret these results to suggest that the interference effects we observed cannot 

be driven by a surprise-related effect resulting from the changing cue colors. 

 
Figure S2. ERP Comparison Between Visuomotor and Motor Interference. The figure 
demonstrates the Pz ERPs following the interference onset (1400ms; the black square indicates the 
interference period). The shaded spaces show the standard errors for each time point. Our CBPT 
analysis showed no difference at any time point between the visuomotor and motor interference ERPs. 
This suggests that the changing colors in the visuomotor interference condition did not trigger a surprise  
effect. 

 

 

Motor  

Visuomotor  
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Text S3: Response times and mu/beta lateralization 

As discussed in the Discussion section, recent studies have shown that stronger mu/beta 

lateralization regarding the response hand during the encoding stage is associated with faster 

response times during report (Boettcher et al., 2021; Nasrawi et al., 2023). To test whether our 

data reflect a similar pattern, we calculated the median response times of the main task for each 

participant and categorized trials as either above or below this median RT per subject and 

experimental condition. RTs were calculated as the onset of the first movement of the response 

knob. We then averaged the contralateral minus ipsilateral time-frequency data per subject (for 

details on TF calculation and electrode selection see Methods section, Analyses, Time 

Frequency), and compared these differences between the above- and below-median RT trials 

using a CBPT. Our results showed no significant cluster in this comparison (Figure S3 A;B). 

We further interpret these results in the discussion section.  

 
Figure S3. Mu/Beta Lateralization Comparison Between Slow and Fast Response trials. Figures 
show contra-minus-ipsilateral time-frequency (TF) decomposition over C3, C4, CP3, and CP4 channels 
relative to the response hand. The 0–500 ms box indicates the stimulus presentation window. 
A) Contralateral TF suppression for slow response trials, calculated from trials with response times 
above the subject-specific and condition-specific medians for the memory task. B) Contralateral TF 
suppression for fast response trials, calculated from trials with response times below the subject-specific 
and condition-specific medians for the memory task. Our CBPT comparison revealed no significant 
difference between the fast and slow trials. 
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Text S4: Discontinuation of mu/beta lateralization by the interference 

Our data supported the idea by Gresch et al. (2025) and Zickerick et al. (2021)that attention is 

redirected to the primary task immediately after having responded to an interrupting task. We 

further explored whether response hand selection for the main task is prioritized immediately 

following the interference task. To test this idea, we compared the contralateral mu/beta 

suppression for the visuomotor and motor interference conditions combined across the entire 

trial period. As Figure S4A shows, during the interference period, mu/beta suppression is 

interrupted and then recovers (cluster size: 12699, dmax = 1.737, dmean = .803).The onset time 

of this recovery corresponds to the response time of the interference task (Mean = 644.49ms, 

SD = 105.068ms), as indicated by the red line in Figure S4A. This indicates that once the 

interference task is done, the motor codes of the main task are prioritized immediately.  

Furthermore, we conducted the same comparison time-locked to the secondary task response 

(Figure S4B). In line with our previous findings, this analysis showed that the re-emergence of 

motor planning for the main task was time-locked to the secondary task response following the 

interruption (cluster size: 3870, dmax = 1.609, dmean = .742). 
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Figure S4. Contralateral Mu/Beta Suppression; Visuomotor and Motor Interference.  The black 
box on the left represents the stimulus presentation window (0-500ms), while the larger black box on 
the right indicates the interference time window (1400-2900ms). Marked areas with black lines show 
the significant clusters. A) The red line on the figure represents the average RT of the interfering task. 
Recovery of the mu/beta lateralization following the interference corresponds to the average response 
time of the interference task. B) Black line (time point 0) indicates the secondary task response. The 
response-locked analysis shows the re-emergence of the contralateral mu/beta suppression is time-
locked to the secondary task response. 
 


