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ABSTRACT
Gating processes that regulate sensory input into visual working memory (WM) and the
execution of planned actions share neural mechanisms, suggesting a mutual interaction. In a
preregistered study (OSF), we examined how this interaction may result in sensory interference
during WM storage using a delayed-match-to-sample task. Participants (12 male, 20 female)
memorized the color of a target stimulus for later report on a color wheel. The shape of the
target indicated which hand they would adjust the color wheel with. During the retention
interval, an interference task was presented, requiring a response with either the same or
different hand as the main task. In half of the interference trials, the interfering task cue was
also colored to introduce visual interference. EEG results showed early motor planning during
sensory encoding, evidenced by mu/beta suppression contralateral to the responding hand. The
interference task only impaired WM performance when it included an irrelevant color,
indicating that the interference effect was primarily driven by the irrelevant sensory
information. In addition, color reporting in the WM task was biased toward the irrelevant color.
This was more pronounced when both tasks were performed with the same hand, suggesting a
selective gating mechanism dependent on motor control processes. This effect was mitigated
by a control mechanism, which was evident in frontal theta activity, where higher power
predicted lower bias on the single-trial level. Our findings thus reveal that sensory WM
updating can be induced by interfering motor actions, which can be compensated by a reactive

control mechanism.

SIGNIFICANCE STATEMENT
Working memory is increasingly recognized not just as a passive information storage but as an
active mechanism that constructs prospective representations to guide future actions. We
investigated how future-oriented plans regulate the entry of new information for maintenance.
We found that when a stored memory is linked to a response, it becomes particularly vulnerable
to interference from sensory input that demands the same response. We also identified neural
signatures of this interaction where a control mechanism mitigates interference from irrelevant
information. These findings provide key insights into the fundamental architecture of memory,
demonstrating for the first time that prospective motor codes not only shape the use of stored

information but also influence how new information is integrated into working memory.



INTRODUCTION

Working memory (WM) serves a critical function in human cognition by maintaining
and manipulating task-relevant information (Baddeley, 2003). Recent research has increasingly
focused on the ‘task-relevant’ aspect of WM, emphasizing its prospective nature (Gunseli et
al., 2014; Huang, 2015; for reviews see Miller et al., 2018; Olivers & Roelfsema, 2020; Postle,
2006; van Ede, 2020; Van Ede & Nobre, 2023). The shift towards a prospective view has
expanded the examination of how sensory representations are maintained and manipulated in
a bidirectional relationship with prospective action representations (Boettcher et al., 2021;
Nasrawi et al., 2023; Olivers & Roelfsema, 2020; Rosner et al., 2022; Sahakian et al., 2025;
Schneider et al., 2017; Trentin et al., 2023). Building on this framework, the present study
investigates the influence of action planning on WM gating processes, specifically examining
the extent to which the storage of relevant information in WM is susceptible to interfering

stimuli.

The prospective view on WM highlights the relationship between sensory and motor
representations by showing concurrent preparation of motor plans for prioritized WM items
(Boettcher et al., 2021; Nasrawi et al., 2023; Rosner et al., 2022; Schneider et al., 2017; van
Ede et al., 2019). In this context, evidence for motor preparation is characterized by the
suppression of mu/beta oscillatory power (8-14/14-30 Hz, respectively) over the sensorimotor
cortex contralateral to the responding hand, which can occur concurrently with the attentional
selection of the target item. And this concurrent motor process affects how information is stored
in WM. For example, action selection can influence which memory feature is prioritized (Heuer
et al., 2020) or mediate the level of inter-item biases when multiple items in WM are associated

with different actions (Trentin et al., 2024).

If motor processes influence how information is stored in WM, might they also regulate
how new information enters WM during ongoing storage? Such a relationship is plausible,
given evidence of overlapping neural mechanisms between motor control processes and WM
input gating, i.e., the regulation of information flow into WM (Chatham & Badre, 2015).
Therefore, the planning or execution of a motor response might indirectly influence WM's
susceptibility to new information, either enhancing (open gate) or reducing (closed gate)
information uptake. Our investigation specifically examines how this input gating process is

modulated by correspondence between motor representations maintained in WM and motor



responses executed during an interfering task. We hypothesize that sensory inputs associated
with corresponding motor responses are more likely to gain access to WM, suggesting a

selective gating mechanism that prioritizes information aligned with stored motor plans.

To test this hypothesis, we employed a delayed match-to-sample WM task that required
reporting the color of a target stimulus (Figure 1). We manipulated motor planning by assigning
the shape of the target object to indicate the use of either the left or right hand for color report.
Additionally, we introduced an interference task during the WM storage interval, requiring
participants to perform a secondary action with either the same or a different hand as used in
the primary task. In half of the interference trials, the cue during this secondary task was

colored, allowing us to introduce sensory interference.

Our study was guided by three preregistered hypotheses (OSF). First, we observed the
onset of oscillatory correlates of motor planning early during encoding (Hypothesis I), however
there was no relation to later retrieval performance. Moreover, we showed higher error rates
after visuomotor interference, with no difference between baseline (no interference) and motor
interference conditions, indicating that the irrelevant color interfered with WM (Hypothesis II).
Finally, we observed a higher attraction bias in WM towards the interference color when the
same hand was used for both tasks (Hypothesis III). This effect was accompanied by an
increase in frontal theta power following the response to the secondary task, potentially
reflecting a reactive control mechanism to reduce the impact of task-irrelevant information on

WM (Rac-Lubashevsky & Kessler, 2015, 2018).

METHODS

Participants

A total of 32 (Mage= 23.71; SDage = 2.93; 20 Female) participants participated in the
experiment, and were compensated with either money (12€ per hour) or course credits. Two
participants were excluded from further analysis due to their misunderstanding of the
instructions (i.e., pressing the response buttons already during target presentation), and one
participant was excluded based on the exclusion criteria detailed below. Additionally, one
participant’s data was used only for the behavioral analysis due to excessive noise in the EEG
signal. Thus, the final behavioral analysis included 29 participants while the EEG analyses

were conducted with 28 participants.



We calculated the target number of participants using G*Power software (Faul et al.,
2007). A priori sample size calculations were conducted for a one-tailed paired-samples t-test
referring to the response correspondence effect on attraction bias (Hypothesis III; see
Behavioral Analysis section). These calculations employed an alpha level of .05 to control for
Type I error, with a desired power of 95%. Given the novelty of the effect under investigation
and the lack of directly comparable studies, we used the effect size (Cohen’s d = 0.71) from a
study on active vs. passive engagement with a distractor during working memory storage as a
reference (Saito et al., 2023). This analysis yielded 23 as the minimum number of participants
to achieve the desired statistical power. Since this study did not align perfectly with our research
questions, the target number of participants has been increased slightly to account for a

potentially weaker effect.

To further ensure the robustness of our sample size, we reviewed studies measuring
mu/beta suppression during motor planning in a WM experiment, where three studies used a
sample size of 24-26 (Boettcher et al., 2021; Rdosner et al., 2022; van Ede et al., 2019). To
accommodate the counterbalancing of the assignment of stimulus shape to responding hand
(see Procedure), we determined an even number of 26 participants as the target sample (see
OSF preregistration). Our final data collection slightly exceeded this target by two datasets
(i.e., 28 datasets including EEG data) due to inaccurate coordination with the laboratory staff.
Importantly, conducting the analyses only with the first 26 usable datasets did not alter the

result patterns.

Data quality is assured by the preregistered exclusion criteria. Participants with an
accuracy lower than 70% in using the correct hand in the main task were excluded from further
analyses. Furthermore, participants whose mean absolute error was more than 2 standard
deviations away from the sample mean were discarded. As indicated above, this led to the

rejection of one dataset from all further analyses.

Ethics statement
This study was conducted under the ethics approval of the local ethics committee at the
Leibniz Research Centre for Working Environment and Human Factors and in accordance with

the Declaration of Helsinki.

Apparatus, stimuli, and procedure



The experiment was conducted using a ViSaGe MKII Stimulus Generator (Cambridge
Research Systems, Rochester, UK) and presented on a 22-inch CRT screen (resolution:
1024x768, refresh rate: 100 Hz) in a dimly lit, electrically shielded experiment room. The
paradigm was prepared and coded on Lazarus IDE with free Pascal. Responses were collected
via two response knobs. These knobs were constructed from 3D-printed material, covering two
rotary encoders attached to an Arduino processor (Arduino, Lombardia, Italy). The knobs could
be rotated continuously, and the rotational data were decoded by the two rotary encoders and
transmitted to the experimental setup using Arduino. The minimum step size of the encoder
rotation corresponds to 2° on the color wheel. The experiment consisted of 1200 trials in 10
blocks. There was a short break of ~2 minutes between the blocks and a longer break of ~5-10

minutes halfway through the experiment.

For stimulus presentation, 180 colors were sampled from HSV color space. The
saturation and the value were kept constant (S=.85, V=.9). According to the gradual change in
hue (from 1 to 360, 2 degrees per step), 180 colors were sampled at equal distances. Each
sample color was used as the target color 6 to 7 times. The sampled 180 colors were then placed
on a visual circle to prepare a color wheel (the probe) in each trial. The orientation of the color

wheel was randomized to prevent a re-coding of color into a spatial location on the color wheel.

Before the experiment, all participants completed a handedness questionnaire (Oldfield,
1971) to assess their dominant hand. All participants were classified as right-handed. Due to
the nature of the experimental task, their color vision was evaluated via the Ishihara Test for

Color Blindness.

Participants were asked to complete a delayed match-to-sample WM task in each trial
(see Figure 1). First, they were shown a target item centered on the screen to remember its color
until the end of the trial. The target was presented as either a square or a diamond shape (1.83°
x 1.83°) at the center of the screen. The shape of the target item informed participants whether
to use their right or left hand for color report (e.g., right hand for square, left hand for diamond).
Shape-hand assignment was counterbalanced across participants. The target presentation was
followed by a fixation cross (0.44° x 0.44°) for 900ms. Then, participants were presented with
the interference period for 1500ms. What participants encountered in the interference period

differed across three conditions: motor interference, visuomotor interference, and baseline.



In the motor interference condition (400 trials), we presented a gray arrow as a cue
which either pointed to right or left (HSV: 0, 0, 0.5; side length: 1.83°). Participants were
instructed to click the response knob on the side the arrow pointed to as quickly as possible. In
the visuomotor interference condition (400 trials) participants were instructed to do the same
task, but this time the cue color varied. The cue color was 60-90 degrees away from the target
color on the color wheel. The level of difference was preferred to maximize the interference
effect (Saito et al., 2023). Thus, the color of the cue added a visual interference aspect to this
condition. The varying colors of the visuomotor interference did not create an Oddball-like
effect (Polich & Margala, 1997; Reed et al., 2022), as shown by the comparison of the event-
related potential (ERP) between the visuomotor and motor interference conditions (Text S2;
Figure S2). In the baseline condition (400 trials), participants were shown a gray arrow which
pointed either upwards or downwards. In this condition, they were expected to ignore the arrow
and respond only to the presentation of the later memory probe. All conditions were presented
in a randomly interleaved manner throughout all trials. Regardless of the condition or
participants' response times to the interference task, the cues remained on the screen for

1500ms.

Following this interference period, participants were presented with another fixation
cross for 500ms. Then they were instructed to indicate the memorized color on a color wheel
(diameter: 5°; thickness: 1°) by rotating the response knob which had been indicated by the
shape of the target item at the beginning of the trial. By rotating the knob, participants moved
a small arrow (a trapezoid, height: 0.95°; bottom 0.38°; top: 0.23°) over the color wheel to
select the desired color. The color of the arrow (or cursor) dynamically updated as it moved
along the wheel, matching the currently selected color to facilitate accurate selection. To
finalize their response, participants were required to press the knob after having completed
their color adjustment. Each trial allowed participants a maximum of three seconds to complete
their response. If the participant did not press the knob within this time frame, the last color

indicated by the cursor was automatically recorded as the given response.
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Figure 1. Illustration of the experimental procedure. Participants completed a delayed match-to-
sample task, and the response hand was manipulated. The color of the target had to be remembered for
later report, while its shape indicated which hand to use for that. Color report was done by adjusting a
color wheel to display the target color through rotating one of two response knobs. During the
maintenance phase, participants performed an interference task requiring a response to the direction of
a central cue (pressing the left vs. right knob) that either corresponded or did not correspond to the hand
used in the main task. In half of the interference trials, the interference cue was colored, introducing
visual interference. In the baseline condition (cue pointing up or down), there was no response required
during maintenance.

Behavioral Analyses
Registered analysis

Only trials in which participants responded to both the main task and the interference
task using the cued hand were included in the behavioral analysis. In each trial, the absolute
difference between the given response and the target color was calculated as an error (relative

to their position on the color wheel).

For all behavioral analyses, we provide both frequentist and Bayesian statistics. In
Bayesian repeated measures ANOVAs, the BF 1o value represents the comparison of the tested
model (with a given main effect) against the null model. When analyzing interactions, the null

model includes the main effects (Bergh et al., 2020).



For Hypothesis II (see above), absolute errors were averaged for each condition to
reveal the magnitude of the interference effect. We expected to see more interference when the
interfering task had an irrelevant visual feature (visuomotor condition), compared to the motor
interference condition. To test the difference between different types of interference and their
relation to the baseline condition, we conducted a one-way ANOVA with three levels
(visuomotor interference, motor interference, baseline). All p-values from the multiple

comparisons following the ANOVA were Holm adjusted.

Hypothesis III focused on how the WM representation is biased by the interfering visual
object in the visuomotor interference condition. To examine this effect, we calculated the
attraction bias. Since the effect is calculated relative to the interference color, this could only
be realized in the visuomotor interference condition. In each trial, an attraction bias was
assumed if the reported color lay in the direction of the interference color on the color wheel.
The opposite case is considered a repulsion bias (Chunharas et al., 2022). For analyzing this
bias, each error value between the actual and the reported color was assigned a positive or a
negative value, depending on whether there was a shift in the direction of or against the position
of the interference color. Then, we calculated the average of assigned errors for each condition
to determine the bias terms for each participant. We expected to observe a stronger attraction
bias when the main and secondary tasks were executed with the same hand (corresponding
condition) than with different hands (non-corresponding condition). Therefore, we conducted
a one-tailed paired-samples t-test between the bias of the compatible and incompatible
visuomotor interference conditions. Final statistical tests of behavioral analyses were
conducted in JASP (Love et al., 2019), after transferring processed data from MATLAB, unless

stated otherwise.

Exploratory analysis

To assess the effect of different types of interference on WM representations, we
compared the precision across conditions for each participant. For this analysis, errors were
signed as positive if they were clockwise from the target color, and negative if they were
counterclockwise. We then calculated the standard deviation (SD) of the signed errors for each
condition separately for each participant and defined precision as 1/SD. As in Hypothesis II,
we conducted a one-way repeated measures ANOVA with three levels (visuomotor

interference, motor interference, baseline).



Furthermore, we compared response times (RT) and accuracies in the interference task.
We aimed to investigate whether differences in hand correspondence conditions were related
to task difficulty or complexity. Our assumption was that if no such differences existed, there
would be no variation in RTs or accuracies between the corresponding and non-corresponding
conditions. We compared both RTs and accuracies using a 2x2 one-way ANOVA

(motor/visuomotor interference, corresponding/non-corresponding response hand).

EEG recording, preprocessing and analyses
Recording

EEG was recorded with 64 Ag/AgClI passive electrodes (Easycap Gmbh, Herrsching,
Germany) with a sampling rate of 1000 Hz. NeurOne Tesla AC amplifiers (Bittium Biosignals
Ltd, Kuopio, Finland) were used for data collection with a 250 Hz low-pass filter. We used the

FCz channel as the reference and AFz as the ground electrode position.

Preprocessing

We used MATLAB (R2023b, Mathworks, Natick, USA), the ERPLAB toolbox (Lopez-
Calderon & Luck, 2014), and the EEGLAB toolbox (Delorme & Makeig, 2004) for the analysis
of the EEG data. First, a high-pass filter with a 0.1 Hz threshold and a low-pass filter with a 40
Hz threshold were applied using an IIR Butterworth filter via the ERPLAB Toolbox's
pop_basicfilter (default order: 3*(sampling rate/low cut off)) function. After filtering, channels
with dense artifacts were rejected using the pop_rejchan function (kurtosis threshold: 15), an
automated process provided by EEGLAB. Frontal electrodes were excluded from this rejection
procedure to maximize the capture of eye-related variance in the subsequent independent
component analysis (ICA). Following channel rejection, the data were re-referenced by setting
the average of all channels as the new reference. The steps between re-referencing and ICA
were performed only as preparation for ICA. After calculating the IC weights, the pipeline
reverted to the re-referencing stage, where the IC weights were applied to the re-referenced

data, disregarding the intermediate steps.

ICA specific steps and IC rejection. After re-referencing, the data were downsampled
to 200 Hz and high-pass filtered with a 1 Hz threshold using a Hamming-windowed sinc FIR
filter (pop_eegfiltnew, filter order: 661, transition bandwidth: 1 Hz, cutoff frequency at —6 dB:
0.5 Hz). The data were then epoched, starting 1000ms before stimulus onset and ending

4400ms after stimulus onset. A baseline correction was applied using the 200ms period prior
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to stimulus onset. Automated trial rejection was then performed using EEGLAB's pop _autorej
function (threshold: 500 pV, maximum percentage of rejected trials per iteration: 5). ICA was
applied following trial rejection. Independent components (ICs) were then identified using the
ICLabel classifier for EEGLAB, classifying components into categories such as brain, muscle,
eye movements, heart activity, channel noise, line noise, and "other" (Pion-Tonachini et al.,
2019). ICs with a probability of being eye movement greater than 30%, and with a probability

of being brain signal less than 10%, were marked for later rejection.

After ICA steps. After IC rejection, the remaining IC information was attached back
to the re-referenced data, bypassing the ICA preparation stages. The data were then epoched
from -1000ms to 4400ms, time point zero being the onset of the target stimulus. A baseline
correction was applied using the 200ms pre-stimulus time window. IC components labeled as
artifacts were removed. Any remaining noisy trials were rejected using the same automated
trial rejection method applied during the ICA preparation stages. Finally, missing channels
were interpolated using the pop interp function in EEGLAB, with spherical spline

interpolation, and the data were downsampled to 250 Hz.

Our preprocessing pipeline resulted in rejecting 32 ICs, on average (SD = 6.49).
Excluding the blink artifacts (which are large deflections), the rejected ICs explained on
average 17.82% of the variance across all participants (SD = 24.92), including components
related to muscle activity, heartbeats, line noise, channel noise, and other artifacts. As a result
of artifact rejection, we had an average of 933.32 remaining trials (SD = 151.51). Remaining
trial counts per condition were as follows: Visuomotor corresponding (Mean = 143.42, SD =
16.06), Visuomotor non-corresponding (Mean = 144.5, SD = 16.34), Motor corresponding
(Mean = 141.50, SD = 14.14), Motor non-corresponding (Mean = 142.75, SD = 17.80), and
Baseline (Mean = 282.07, SD = 31.24). On average, 63.32 channels remained after
preprocessing (SD = 1.38).

Time-frequency decomposition

We first calculated the time-frequency decomposition of the data. For each trial and
channel, the oscillatory power for each frequency was calculated from 4 to 30 Hz on a
logarithmic scale in 26 steps. For each frequency in the given spectrum, a complex Morlet
wavelet was created by tapering a sinusoid (ei2ft) of the given frequency with a Gaussian [(e-

t2/2s2; s is the width of the Gaussian; s = /(2f) corresponds to the number of cycles of wavelet)].
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Our zero padded data, and the Morlet wavelets were Fast Fourier transformed (FFT).
Convolution in TF decomposition was done by multiplying the signal's Fast Fourier transform
with the Fast Fourier transform of a complex Morlet wavelet in each frequency by taking the
dot product. Then an inverse Fast Fourier transform was applied to get the time-domain result.
We applied a baseline normalization by averaging the -400ms to -100ms time interval in all
trials and divided each trial by this averaged value and converted the measurement to decibel

(dB).

Registered analysis

To explore the first part of Hypothesis I, which predicts the onset of motor planning
during the visual encoding and early maintenance phase of to-be-memorized colors, we
calculated contralateral mu/beta suppression following target presentation. This refers to the
suppression of ~8-30 Hz activity on the side opposite to the hand being used for a response in
the main task, measured over the centro-parietal EEG channels (C3, C4, CP3, CP4) (Rosner et
al., 2022). Previous research has established the contralateral mu and beta suppression as a
signature of action planning (Boettcher et al., 2021; Nasrawi et al., 2023; Rosner et al., 2022;
Schneider et al., 2017; van Ede et al., 2019).

First, we calculated both contralateral and ipsilateral power across all time points and
frequencies by assigning channels regarding their position to the main task response hand.
Contralateral power was always derived from the channels on the side opposite to the
responding hand for the main task in each trial. This analysis focused on the encoding and
maintenance stage prior to interference, defined as the period from Oms (target stimulus onset)
to 1400ms (interference cue onset). Since no experimental conditions could have had an
influence on EEG response in this time interval, we averaged all trials across conditions for
each participant. Lateralization in oscillatory power was calculated as the contralateral-minus-
ipsilateral difference. To determine whether there was significantly stronger suppression on the
contralateral side, we performed a cluster-based permutation test (CBPT). This procedure
began by comparing contralateral minus ipsilateral oscillatory power to zero using a one-
sample t-test at each time and frequency point, identifying significant points where p <.05. We
then randomly assigned the sign (positive or negative) of the difference for each participant’s
data points across 1000 permutations, creating a distribution of permuted significant cluster

sizes. Clusters from the original data that were larger than the 95th percentile of the permuted
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clusters were considered significant. For the significant cluster, we calculated Cohen’s d for

each datapoint and reported the maximum and average effect size for the cluster.

Hypothesis I also predicts that greater contralateral mu/beta suppression during the
encoding stage will be associated with higher WM accuracy (Boettcher et al., 2021; Nasrawi
et al., 2023). To test this hypothesis, we used a median split approach for each condition
separately. First, we calculated the median error value (based on absolute errors) for each
participant. Then, for each condition, we calculated the average contralateral mu suppression
for trials where the error was below the median and for trials where the error was above the
median. To determine whether there was a significant difference in contralateral mu/beta
suppression between the below-median and above-median trials, we applied the same CBPT
procedure explained above. This test compared the two performance conditions over time (0-
1400ms), conducted separately for each experimental condition. The aim was to identify any
time-frequency clusters where a persistent and significant difference in contralateral

suppression occurred between the below- and above-median trials.

Exploratory Analysis

While the prior analyses address motor planning processes during the encoding and
maintenance phase of visual information in WM prior to interference, we also investigated to
which extent the presentation of an irrelevant color affected the re-focusing on primary task
information after completion of the secondary task. Prior investigations have revealed that this
process can be tracked by the suppression of oscillatory power in the alpha frequency range at
posterior electrodes (Woodman et al., 2022). Therefore, posterior oscillatory power was
calculated as the average oscillatory power at the Oz, O1, 02, Pz, PO3, and PO4 channels. For
the between-condition comparison, we applied a CBPT as explained above. The two
interference conditions (motor, visuomotor) were compared against the baseline condition and
against each other during the interference interval (1400-3400ms after target presentation; see
Figure 3B-C). We did not average over the alpha band (8-12 Hz) to see the distribution of the
effect across frequencies more clearly; however, we expected the effect to be centered around

alpha.

Given that the analysis of posterior oscillatory power showed differences between the
visuomotor and motor interference conditions (see Figure 3C), we aimed to examine the time

course of this difference concerning the secondary task response. This approach allowed us to
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determine whether the onset of the difference aligned with the secondary task response, which
would prove that it is rather about the refocusing on the visual content from the primary WM
task than about the visual processing of the secondary task cues. To achieve this, we calculated
the oscillatory power time-locked to the response to the secondary task. After the regular time-
frequency decomposition, we adjusted the timeline of each trial to be centered around the
response to the secondary task. Similar to the analyses of posterior oscillatory power time-
locked to secondary task cue onset, we calculated the average over trials for each condition and
each subject. We then performed the same comparisons as with the stimulus-onset-locked
posterior alpha analysis from 700ms prior to 700ms after the response (Figure 3D; not

including the baseline condition since there was no secondary task response).

In the above analyses, we conducted all examinations using pre-selected channels as
regions of interest to investigate specific attentional and motor planning mechanisms.
However, none of these analyses directly addressed the EEG correlates as a function of
Hypothesis III (see Results), where we demonstrate the effect of hand correspondence on WM
gating. Therefore, we further compared the corresponding and non-corresponding visuomotor
conditions in an exploratory manner. First, we averaged the time-frequency decomposition for
each condition for every participant, and we conducted another CBPT including all channels,
all frequency bands and the time interval following interference presentation (1400-3400ms)
across participants. To be able to explore the differences over all channels, we used the
FieldTrip (Oostenveld et al., 2011) CBPT protocol. For the acquisition of the statistics, the
ft_fregstatistics function was used (estimation method: Monte-Carlo, cluster correction, alpha:
.05, t-statistics, cluster formation approach: t-sum (default), minimum number of channels for
cluster formation: 2, false alarm rate: .05, number of randomizations 5000). For the calculation
of neighboring channels, distances between channels were determined by the automated
FieldTrip procedure. Due to the t-sum approach used in the procedure, t-values were summed
for each cluster, and clusters from each permutation were distributed according to their t-sum
values. The actual clusters with a t-sum higher than 95 percent of permuted clusters was

considered significant.

To achieve a meaningful distribution of channel contributions to the observed effects,
a procedure from Ulkii et al. (2024) was adapted. The number of significant data points from
each channel was divided by the number from the channel with the highest number of

significant data points, creating a value representing the relative contribution of each channel.
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Channels scoring more than 0.7 were considered part of the identified cluster. Significant
clusters in the time-frequency domain were displayed in a contour map, along with the

contributing channels.

Our exploratory analysis revealed a frontal theta difference between the corresponding
and non-corresponding visuomotor interference conditions at the end of the interference cue
presentation window (see Results). Further, we aimed to explore whether this TF pattern
correlates with the strength of the attraction bias on a trial-by-trial basis. To calculate this, we
conducted a correlation test, computing Pearson's correlation coefficient between each time-
frequency power point and the attraction bias across all trials. We then applied Fisher’s z-
transformation, which involves calculating the inverse hyperbolic tangent of the coefficient
distribution. This produced a matrix of time points x frequencies for each subject, each channel,
and each condition (only sub-conditions of the visuomotor interference condition) with Fisher
z values. We then averaged the frontal channels AF3, AF4, F1, F3 and F5 which were provided
by the previous analysis as the biggest contributors of the theta effect observed (Figure 4B) and

conducted a CBPT against zero for both conditions.

RESULTS

Behavioral results
Effects of interference on working memory task performance

We conducted a repeated measures ANOVA with three levels of interference type
(motor interference, visuomotor interference, baseline) to determine whether adding a visual
feature (the color of the interference task cue) interferes with the main task WM representation
(Hypothesis II). We analyzed absolute average errors across conditions for each participant.
Results indicated a main effect of interference type, F(2, 56) = 35.35, p < .001, n? = .558,
BF10=5.48x108. Post hoc comparisons revealed that visuomotor interference led to significantly
higher errors compared to both the motor interference (#(28) = 7.551, p <.001,d = 0.718, 95%
CI [2.933 1.488], BF10=6.24x10°) and the baseline condition (#28) = 6.981, prom< .001, d =
0.664, 95% CI [2.766 6.981], BF10=1.51x10%). No significant difference was found between
the motor interference and the baseline condition (#(28) =0.570, phoim = .571, d = 0.054, 95%
CI [0.889 -0.556], BF10=0.24).

We also examined the effect of corresponding vs. non-corresponding motor features

between the main task and the interference task on behavioral performance to observe if shared
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motor features affect the handling of secondary tasks during WM storage. For this analysis, we
used two factors: interference type (motor, visuomotor) and whether the response hands were
corresponding or non-corresponding between tasks. To achieve this, we conducted a 2x2
repeated-measures ANOVA. Results showed a main effect of interference type (as it was shown
in the previous analysis, F(1,28) = 59.831, p < .001, n?> = .447 , BF0=7.23x10°) and a main
effect of response-hand correspondence (F(1,28) = 5.371, p =.028, n* = .04, BF10=2.18), with
no significant interaction (F(1,28) = 0.018, p =.895, n*> = 5.87x10°, BF10=0.33). Post hoc
testing indicated that when the hands used for the tasks were non-corresponding, WM accuracy
was lower (#(28) = 2.137, phoim = .028, d=0.207, %95 CI [0.077 1.244], BF10=4.4). This shows
the effect of an interrupting task was slightly stronger when the two responding hands did not

correspond between tasks.

Additionally, we tested whether the type of interference or the hand correspondence
had an effect on the probability of using the correct hand for the main task by 2x2 repeated
measures ANOVA (visuomotor/motor; corresponding/non-corresponding). Our results showed
neither a main effect of interference type (F(1,28) = 1.417, p =.244, n* = .006, BF10=0.35), nor
hand correspondence (F(1,28) = 2.518, p =.124, n* = .058, BF10=0.93) nor an interaction
(F(1,28) = .204, p =.655, n* = .001, BF10=0.308).

Effects of interference on precision

We conducted a similar analysis on WM precision (1/SD; see methods section). The
comparisons of precision yielded results consistent with those of accuracy, revealing a main
effect of interference type (F(2, 56) = 12.915, p <.001, n? = 0.316, BF10=769.9). Specifically,
precision was lower in the visuomotor interference condition than the motor interference (#(28)
=4.54, proim < .001,d = 0.573, 95% CI1[0.204 0.942], BF10=1803.5). However, precision in the
motor interference condition did not differ from the baseline condition (#(28) = 0.299, proim

=76, d = 0.038, 95% CI [-0.278 0.354], BF14=0.205).

Next, we examined the effect of hand correspondence in relation to the interference
type. The analysis demonstrated a significant main effect of interference type, (F(1, 28) =
32.247, p <.001, n* = 0.252, BF10=2362.71). Additionally, we observed a significant effect of
hand correspondence (F(1, 28) = 5.043, p =.033, n> = 0.055, BF10=1.725), with no significant
interaction (F(1, 28) = 0.367, p =.055, n* = 0.002, BF0=0.28). The effect of hand

correspondence suggested that precision was slightly lower when the hands did not correspond
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between the main task and the interference task (#28) = 2.24, proim =.033, d = 0.276, 95% CI
[0.016 0.536], BF10=2.88).

Working memory gating and hand correspondence

In Hypothesis III, we predicted that shared motor features between the main and
secondary tasks would trigger WM gate opening during maintenance, which should lead to an
encoding of new sensory input. This will lead to an interaction between the color information
already stored in WM and the task-irrelevant color of the interference task cue. Specifically,
we expected this effect to manifest as an attraction bias between the interfering color and the

target color in WM.

To assess whether attraction occurred, we first compared both conditions
(corresponding and non-corresponding response hands) against zero using a one-tailed one
sample t-test. The analysis showed that WM representations were attracted to the interfering
color in both corresponding (#28) = 6.936, p<.001, d = 1.288, 95% CI [2.427 «]; BFio=
201668) and non-corresponding conditions (#(28) = 6.077, p<.001, d = 1.128, 95% CI [1.534
o]; BF10=24493).

Next, we directly compared attraction biases between corresponding and non-
corresponding response hands in the visuomotor condition using a one-tailed paired-samples t-
test (Figure 2C). Results indicated that when response hands corresponded between the two
tasks, attraction biases were significantly higher (#28) = 2.580, p=.008, d = 0.479, %95 [0.370
o]; BF10= 6.265).

Interference task response times and accuracy

We compared the interference task RTs using a repeated measures 2x2 ANOVA (motor,
visuomotor; corresponding, non-corresponding hand) to see any possible differences in the
interference task performance as a function of hand correspondence (Figure 2E). Our results
showed no main effect of interference type (F(1, 28) = 2.526, p = .123, n* = .03, BF10=0.679)
or hand correspondence (F(1, 28) = 0.109, p =.743, n* = .002, BF0=0.302). While there was
a significant interaction (F(1, 28) = 5.55,p= .026, n* = .032, BF10=2.99), no post-hoc
comparisons reached significance (Visuomotor interference: corresponding, non-
corresponding #(28) = 1.509, prom=.69, d = 0.072, %95 [-0.066 0.209]; Motor interference:
corresponding, non-corresponding #(28) = -0.94, prom=1, d =-0.045, %95 [-0.181 0.120];

17



Corresponding hands: visuomotor, motor #28) = 2.654, phrom=64, d = 0.115, %95 [-0.015
0.244]; Non-corresponding hands: visuomotor, motor #(28) =-0.053, prom=1, d =-0.002, %95
[-0.124 0.120]). This makes the interpretation of the interaction rather difficult.

Furthermore, we compared the proportion of correct hand use in the interference task
(Figure 2D). Our 2x2 repeated measures ANOVA revealed no significant main effects
(Visuomotor, motor interference: F(1, 28) = 1.417,p= .244, n* = .006, BF0=0.355;
Corresponding, non-corresponding hands: F(1, 28) = 2.518, p = .124, n* = .058, BF10=0.928)
and no significant interaction (F(1, 28) = 0.204, p =.655,1>=.001, BF10=0.302). These results
suggest that the observed difference in attraction bias between corresponding and non-

corresponding conditions were not confounded by variations in task difficulty.
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Figure 2. Illustration of Behavioral Performance. (*p<.05, **p<.01, ***p<.001) . A—B) These panels
compare absolute mean errors in the main task. A) The highest error rates occurred in the visuomotor
interference condition, while motor interference did not differ from baseline. B) Hand manipulation had
a marginal effect on main task performance. Errors were higher in the non-corresponding interference
condition. C) The WM representation was drawn toward the interfering color (attraction bias) in both
corresponding and non-corresponding conditions, with a stronger bias in the corresponding condition.
D-E) There were no significant differences between conditions in interference task performance. Both
the proportion of correct hand usage and reaction times (RTs) remained consistent across conditions.
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EEG
Contralateral mu/beta suppression

In line with Hypothesis 1, we tested whether contralateral mu suppression occurred
during the encoding of visual information into WM prior to the interference. Results showed a
significant cluster in the contralateral minus ipsilateral oscillatory activity following stimulus
onset, between 180-1400ms and 6.48-30 Hz (cluster size: 4426, dmax—=-1.244, dmean=-0.726; see
Figure 3A). The suppression was distributed in the mu/beta range and was localized over
centroparietal regions contralateral to the responding hand in the main task, as expected. This

finding suggests that motor encoding overlaps with the encoding of sensory information.

For the second part of Hypothesis 1, we also predicted that this motor preparation would
be predictive of participants' behavioral accuracy, as shown in previous studies (Boettcher et
al., 2021; Nasrawi et al., 2023). To test this, we split trials into high- and low-performance
conditions based on each participant’s median accuracy score within each condition. Then, we
compared averaged high- and low-performance trials using a CBPT for each condition. Our
results revealed no significant clusters in any condition. Thus, although the mu/beta power
lateralization before the secondary task onset reflects the encoding of the response side for the
later WM report, this process did not determine the accuracy or response times (Text S3; Figure

S3) of this report

Posterior Alpha Suppression

To investigate whether the re-focusing of attention on the WM representation after an
interfering task differed between the two interference conditions, we focused on differences in
oscillatory activity over visual areas. We compared all conditions (motor interference,
visuomotor interference, baseline) with each other, based on CBPT from the interference onset
to the probe onset (1400ms — 3400ms). Results showed that posterior suppression of alpha to
beta power (~8-30 Hz) was stronger in the visuomotor interference condition than the motor
interference condition (between 1668-3400ms and 4-30Hz, cluster size=6550, cluster
threshold=1125.5, dmax= -1.505, dmean=-0.699; see Figure 3C). Oscillatory suppression in the
motor interference condition was also higher than in the baseline condition (between 1624-
2572ms and 4-27.6Hz, cluster size=2637, cluster threshold=1138.5, dmax=-1.170, dmean=-
0.576).
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We further analyzed posterior oscillatory activity in a response-locked manner, focusing
on oscillatory activity time-locked to the responses to the interference task. As shown in Figure
3D, a clear difference in posterior alpha activity emerged between the motor and visuomotor
conditions, largely following the interfering task response (between -248-700ms and 4-
30Hz,cluster size=3758, cluster threshold=666, dmax=-1.45, dmean=-0.707). This observation
suggests that the posterior alpha power differences reflect refocusing on the to-be-reported WM

representation, rather than differences in processing the interference task.
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Figure 3. Early Motor Planning, and Reallocation of Attention After Interference. Black outlined
areas indicate significant clusters identified through CBPT. White dots on each topography represent
the selected channels used for the comparison. A) As an indication of motor planning, mu/beta
lateralization (channels: C3, C4, CP3, and CP4; calculated as contra-ipsilateral channels regarding the
selected hand) begins early, aligning with the target's appearance on the screen. The topography reveals
that this effect is localized to centro-parietal electrodes. The rectangle frame marks the target
presentation window (0-500ms). B) Posterior alpha/beta suppression (averaged over Oz, O1, O2, Pz,
PO3, and PO4) is higher following the motor interference when compared against the baseline
condition. However, the topography shows that this difference is largest over left and right sensorimotor
areas. C) Posterior alpha/beta suppression is most pronounced in the visuomotor interference condition.
The topography shows widespread negativity across the scalp, with a stronger suppression of oscillatory
power at posterior electrodes. The rectangle frame highlights the interference window (1400—2900m:s).
D) The posterior alpha/beta suppression difference between interference conditions emerges largely
following the interference task response. The vertical line at Oms reflects the button press in the
interference task.
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Exploratory Analysis: Frontal Theta and Bias Effect

As an exploratory analysis, we investigated potential oscillatory EEG effects linked to
the attraction bias differences between the corresponding vs. non-corresponding response types
in the visuomotor condition (Figure 4A). To this end, we conducted an additional CBPT across
times, frequencies and channels (for details, see the Methods section). This analysis revealed a
difference in theta power during the later interval between the presentation of the secondary
task cue and the memory probe (between 2368-2784ms and 4-8.26Hz, tsum=2094, tci—=1918,
dmax=0.75, dmean=0.57). Frontal theta power was higher when the hands used in the main and
the interference tasks matched in the visuomotor condition. The channels contributing most to
this effect were AF3, AF4, F1, F3, and F5 (Figure 4A). Notably, there was no evidence of
differences in posterior oscillatory patterns between the corresponding and non-corresponding
conditions. This suggests that the sensory information was processed similarly across these
conditions, ruling out significant variations in early attentional orienting to the irrelevant color

as the primary cause of the attraction bias effect.

To investigate the predictive relationship between the frontal theta difference and the
attraction bias effect toward the secondary task cue color, we calculated single-trial correlations
between time-frequency (TF) data and bias scores for each time point, frequency, and channel.
A CBPT was then conducted on these correlation scores, restricted to the frontal channels
identified in the prior exploratory analysis. This effect was examined separately for the

corresponding and non-corresponding response conditions.

Our analysis revealed that only in the visuomotor corresponding response condition did
frontal theta power predict bias scores at the single-trial level (Figure 4B). Specifically, a
negative relationship was observed: higher frontal theta power was associated with a lower
attraction bias (between 2636-3056ms and 4-7.62Hz, cluster size=689, cluster threshold=489,
dmax=-1.09, dmean=-0.61). These results suggest that the increase in frontal theta power

reflects a reactive control mechanism for mitigating secondary task interference.
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A) TF Power Comparison in Visuomotor Interference:
Corresponding minus Non-corresponding
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Figure 4. Response-Related Bias Effect and Frontal Theta Power. Outlined areas in the contour plots
represent significant clusters identified through CBPT. Black rectangle frames represent the interference
window (1400ms-2900ms). A) An exploratory analysis reveals increased frontal theta activity in the
late phase of the interference interval in the corresponding visuomotor interference condition compared
to the non-corresponding condition. The marked channels of the topography plot highlight the key
contributing channels (AF3, AF4, F1, F3, and F5). B) In the corresponding visuomotor condition only,
frontal theta activity (calculated over the contributing channels from Figure 4A) predicts the level of
attraction bias on a trial-by-trial basis at the end of the interference interval. Higher theta power is
associated with lower attraction bias. The time-frequency distribution of this effect closely resembles
the frontal theta differences observed between conditions.

DISCUSSION
In this study, we tested the role of motor processes in WM gating. Our results showed
that when the planned motor responses for a WM task matched the response required for an
interference task, the irrelevant visual information presented during the interference
task influenced later WM report to a stronger extent. This finding suggests that motor control

processes can modulate the extent to which WM is prone to irrelevant sensory information.

First, there was a main effect of interference type on absolute errors in the WM task.

As shown in Figure 2A, the increase of errors was linked to the presentation of irrelevant
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sensory information (visuomotor condition). There was no general increase in errors by
responding to a secondary task during WM storage (motor condition). This supports the notion
that irrelevant visual information during maintenance can disturb visual WM representations
(Lorenc et al., 2021; Rademaker et al., 2015; Saito et al., 2023), at least when this information
is presented within a sensory object requiring a response. We further observed an effect of hand
correspondence on absolute errors in the WM task (see Figure 2B). When the interference task
was done by the non-corresponding hand, the magnitude of absolute errors increased. This
might indicate that using different hands for the two tasks creates conflict and increased

cognitive demand, impairing the task performance.

In line with our main hypothesis, our results further revealed higher levels of attraction
bias to the interfering color during visuomotor interference when the responding hand
corresponded between the two tasks (see Figure 1C). It is important to note that these two
behavioral parameters (i.e., absolute angular error and signed errors / the bias) exhibited
opposite effects of hand correspondence. This supports their different conceptualization: the
increase of absolute errors with non-corresponding responses reflects a drop of overall task
(i.e., memory) performance, whereas the increase in the attraction bias reflects a stronger
representational shift toward the interfering color. This modulation of the attraction bias aligns
with the view that WM input gating can be influenced by actions (Chatham & Badre, 2015).
According to this view, such gating adaptations may allow WM to respond dynamically to task-
relevant environmental changes during action execution. This process is thought to be mediated
by the basal ganglia (BG), which play a dual role in motor control (Cui et al., 2013) and sensory
gating mechanisms (Slagter et al., 2012). While our study does not provide region/network-
specific evidence for this mechanism, our findings conceptually align with the framework of
BG-mediated WM gating. This means that when the execution of a certain motor action
corresponds to motor plans already stored in WM, it may lead to the uptake of sensory
information into WM resulting in attraction bias. However, it is also possible that the mere
requirement to respond to the cues in the visuomotor interference task leads to a transfer of the
interference color into WM, and the representational shift towards the interference color occurs
at a later stage. In this scenario, the response correspondence effect would reflect a later-stage

effect during memory storage.

Since we calculated the bias parameter as the average of signed errors based on their

position relative to the interference color, it was impossible to determine whether the effect was
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primarily driven by the bias in WM or by swap errors (i.e., misreporting the interference color
instead of the target). To address this, we compared two WM models (Text S1): Target
Confusability Competition Model (TCC; Schurgin et al., 2020) and TCC Swap Model
(Williams et al., 2022); and found that the swap-free model provided a better fit to error
distributions across participants (Figure S1A). Furthermore, when we estimated a bias
parameter using the TCC model (Saito et al., 2025), the results replicated an higher attraction
bias in the corresponding hand condition (Figure S1B). Together, these findings support our

interpretation of the effect as an attraction bias rather than being driven by swap errors.

In order to break down the underlying processes in more detail, we further explored
how the neural oscillatory patterns are linked to the effect of motor correspondence on WM
bias. There was higher frontal theta power for the corresponding than for the non-corresponding
visuomotor interference condition at the end of the interference task interval. This frontal theta
power predicted the level of attraction bias only in the corresponding visuomotor interference
condition, with higher theta power associated with a lower attraction bias (see Figure 4B).
Given the role of frontal theta power in conflict resolution (Cohen & Donner, 2013; Kaiser et
al., 2022; Nigbur et al., 2011), we interpret this activity as reflecting a mechanism that actively
mitigates interference arising from action-induced opening of the WM gate. The fact that the
relationship between theta power and bias in WM is exclusively observed in the corresponding
condition (Figure 4B) further demonstrates the increased reliance on top-down control only
when the response hands match between the tasks. This interpretation aligns with findings by
Rac-Lubashevsky and Kessler (2015; 2018), who demonstrated that when there is an automatic
tendency to update WM, but the task requires maintaining existing information, higher theta
activity is observed. It is further plausible that this control of interference is related to the
focusing attention back to WM (de Vries et al., 2018; Gresch et al., 2025; Zickerick et al.,
2021). This assumption is supported by the fact that other oscillatory parameters such as the
modulations on posterior alpha power (Figure 3D) and the lateralization of the mu/beta power
(Text S4; Figure S4.) also occur in the same time window. While these oscillatory effects
reflect different processes, they might have in common that they are temporally linked to the

resumption of the WM task.
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Given that the motor plan interacted with the attraction effect by the visuomotor task,
it must have been initiated before the interference task. In line with this, mu/beta suppression
contralateral to the responding hand emerged during the presentation of the to-be-memorized
object (Figure 3A). While some studies have suggested that such early correlates of motor
planning can predict precision and response times of the WM task (Boettcher et al., 2021,
Nasrawi et al., 2023), our findings did not support this notion by neither showing an effect on
accuracy nor response times. However, our study did not allow participants to form precise
action plans due to the randomization of the color wheel on each trial. While participants knew
which hand to use, they could not anticipate the exact degree of rotation required. In contrast,
Nasrawi et al. (2023) and Boettcher et al. (2021) allowed for a better prediction of the motor
requirements during target report, because the starting orientation of the memory probe was
fixed, enabling participants to plan the specific amount of rotation required. Additionally in
terms of response times, participants may have prioritized accuracy over speed given the long

response window.

Furthermore, we observed differences in posterior alpha/beta activity (~8-30 Hz)
between interference conditions during the secondary task period (Figure 3C). Most notably,
suppression of posterior alpha/beta power was stronger in the visuomotor interference
condition than in the motor interference condition. This difference appeared largely after the
interference task response (Figure 3D), suggesting that it emerged after the processing of the
interfering task cue was complete (i.e., when no further sensory processing of the interfering
task cue was required). The stronger suppression of alpha/beta power after the visuomotor
interference could therefore indicate greater demands for refocusing attention on the visual
information stored in WM. Moreover, our results show that the timing of the re-emergence of
mu/beta lateralization corresponds with the response times in the secondary task (Figure S4).
These results are in line with Gresch et al. (2025) showing a timely re-orienting of attention to

WM following the completion of an interrupting task.

Limitations

One limitation of our study is the absence of a visual interference condition without any
action requirement. Including such a condition could have clarified whether the observed drop
in memory performance in the visuomotor condition was driven purely by irrelevant sensory
input or depended on a required motor response. However, the main focus of the current

investigation was the interaction between motor processes and sensory interference in WM.

26



Moreover, the additional condition might have allowed us to assess whether the hand
correspondence effect regarding the increased attraction in the corresponding condition or
reduced attraction in the non-corresponding condition (or both). Nevertheless, our finding that
theta power correlated with attraction bias exclusively in the corresponding condition aligns
with previous reports of increased cognitive control demands during automatic, task-

detrimental WM updating (Rac-Lubashevsky & Kessler, 2015, 2018).

Conclusion

In this study, we demonstrated that motor processes influence WM susceptibility to
interference, with corresponding motor demands increasing attraction towards task-irrelevant
information. To our knowledge, this study provides the first experimental evidence for motor
processes affecting WM gating, observed at both behavioral and EEG levels. Additionally, we
proposed that the uptake of irrelevant information into WM is counteracted by a reactive
control mechanism reflected in frontal theta oscillatory activity, aimed at preserving the storage

of task-relevant information in WM.
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Text S1: The models and model fitting
To determine whether our bias analysis is influenced by swap errors, which means mistakenly
reporting the interference color, we conducted additional modeling analyses. First, we
compared the Target Confusability Competition (TCC) Model (Schurgin et al., 2020) with the
TCC Swap Model (Williams et al., 2022). The models are explained in detail below; however,
the main difference is that the TCC Swap model estimates the frequency of swap errors in the
data. We selected this comparison because other swap models in the literature assume equal
memory strength for the target and interference items. In our study, the interference color is not
part of the memoranda, making it unlikely that the target and interference share the same
memory strength. Given this important aspect, we used the TCC Swap which modifies the
model to estimate different memory strengths for the interference and memory items. We
compared these two models using Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC). For model fits and model comparisons, we used the Maximum
Likelihood function of MemToolbox (Suchow et al., 2013). As explained below, the model
comparison indicated that our data’s error distribution is better explained by the TCC model

without the swap error component.

Target Confusability Competition Model
As a signal detection-based theory of working memory (WM), the Target Confusability
Competition Model assumes that responses in a memory task are based on a familiarity signal

that is, participants select the item that feels most familiar at the time of response.

The model posits that each color on the color wheel has an associated memory signal
determined by its psychophysical similarity to the target. On each trial, the model assumes that

the participant chooses the option with the strongest signal.

More formally, the similarity function is denoted as f(x), and d’ represents the memory strength
of the target. The memory signal for each option on the color wheel is drawn from a normal
distribution with a mean of d’ X f(x) and unit variance. The final response corresponds to the
index with the maximum signal value across all colors. As the familiarity function, we used a
similarity function in color space previously derived from a familiarity judgment task (for

details, see Schurgin et al., 2020). This can be expressed as:
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r ~argmax(X_-179,-..,X180)

Target Confusability Competition + Swap Model
TCC Swap model is a modification of the model structure explained above. TCC swap model

first proposed by Williams et al., (2022) to estimate frequency of swap errors.

The modified model estimated four parameters: 6, 8,d'T, and d'P. In the model, S represents
the proportion of swap errors (ranging from 0 to 1); and d'T and d'P correspond to the memory
strengths for the target and the distractor. Similar to previous memory signal for each option
on the color wheel is drawn from a normal distribution with a mean of d’ X f(x) and unit
variance, and they allow let (Y — 179, ...,Y180) represent the probe distribution with means
dy = d'P * g(y) and unit variance for distribution of distractor selection when there is a

swap. Then the response can be modelled as:

w ~ Bernoulli(B)
r ~w X argmax(Y_{-179},...,Y_{180}) + (1 — w) X argmax(X_{—179},...,X_{180})

Model Analyses Results

We compared the goodness of fit measures of two proposed models on the error distribution of
the visuomotor interference condition. Since we have visual interference only in the visuomotor
condition, only this condition allowed us to observe possible swap errors or bias in the
distribution. We compared individual fits by comparing the AIC and BIC scores using paired
sample t-tests. However, since AIC and BIC scores deviate normality, we also report the
Wilcoxon test results as a non-parametric alternative. Our results showed that the TCC model
was a better fit, supported by both AIC (#28) =-6.092, p <.001, d =-1.131, BFi10 = 12704; z=
4.703, p<.001), and BIC (#(28) = -18.629, p <.001, d =-3.459, BF1o= 1915 x 10'%; z = 4.703,
p<.001), as indicated in Figure S1A. Lower AIC/BIC scores indicate better fits.

We conducted the same analysis on signed errors (as explained in the main text, Methods
section, Registered Analysis: Hypothesis III) by assigning all distractor positions as positive
and still obtained the same results for AIC (#(28) =-4.862, p <.001, d =-0.903, BF10=592.763;
z=-4.011,p<.001) and BIC (#(28) =-15.920, p <.001, d =-2.956, BF10 = 4.03x10'2; z= -4.703,
p<.001). This indicates that swap errors with the interference color do not explain the error

distributions of visuomotor interference condition.
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Then, to further examine our bias comparison results from the main text, we implemented a
bias parameter using the WithBias() function of MemToolbox (Suchow et al., 2013), allowing
the TCC model’s estimated distribution to shift (Saito et al., 2025). This way, we estimated the
shift in the distribution of errors (parameter u) besides the memory strength. We fitted the
model to the signed error distributions of each individual in the visuomotor corresponding-
hand and visuomotor non-corresponding-hand conditions. A positive estimate of y indicated
that the distribution is shifted toward the interference color, as errors were assigned negative

or positive relative to the interference color’s position.

Our model estimates showed the same pattern as the model-free approach (Figure SI1B): the
estimated bias was positive and significantly above zero for both conditions (corresponding:
1(28) = 8.140, p < .001, d = 1.512, BF10 = 1.737x10°; non-corresponding: #(28) = 4=5.406, p <
.001, d = 1.004, BF10o = 2303 ), and it was higher in the corresponding-hand condition (#(28) =
3.808, p <.001, d =.707, BFi0 = 45.705).
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Figure S1. Model Comparisons and Model-based Bias Estimations. (*p<.05, **p<.01, ***p<.001)
A) Both AIC and BIC comparisons across participants suggested that the TCC model without swaps fit
our error distribution better, indicating that our error distribution was not explained by swap errors. B)
Model-based bias estimations showed the same pattern of bias: both hand correspondence conditions
exhibited attraction towards the interference color, with a stronger effect observed in the corresponding
hand condition.
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Text S2: Event-related potentials (ERPs)
As explained in the Discussion section, we wanted to see whether there is a surprise-related

effect in the visuomotor interference condition due to the changing colors of the visuomotor
cue. This would be possible if, in certain trials, a randomly selected color attracts attention
because it represents a rare stimulus within the overall experimental procedure. Specifically,
we explored whether this difference between the motor (only grey cues) and visuomotor
conditions (variable cue color) induces an oddball effect in the event-related potential (ERP;

Polich & Margala, 1997; Reed et al., 2022).

To investigate this, we compared the ERPs at electrode Pz across both conditions. ERPs were
calculated as the activity at Pz following standard preprocessing steps (including baseline
removal). For each subject, trials were averaged per condition, resulting in time-locked
amplitude data per condition. We then compared these data using a cluster-based permutation
test (see Methods section of the main text for CBPT details). Our analysis did not show any
difference in the ERPs between the visuomotor and motor interference conditions (Figure S2).
Since both conditions involved the same motor requirements but differed in their visual
features, we interpret these results to suggest that the interference effects we observed cannot

be driven by a surprise-related effect resulting from the changing cue colors.
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Figure S2. ERP Comparison Between Visuomotor and Motor Interference. The figure
demonstrates the Pz ERPs following the interference onset (1400ms; the black square indicates the
interference period). The shaded spaces show the standard errors for each time point. Our CBPT
analysis showed no difference at any time point between the visuomotor and motor interference ERPs.
This suggests that the changing colors in the visuomotor interference condition did not trigger a surprise
effect.
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Text S3: Response times and mu/beta lateralization

As discussed in the Discussion section, recent studies have shown that stronger mu/beta
lateralization regarding the response hand during the encoding stage is associated with faster
response times during report (Boettcher et al., 2021; Nasrawi et al., 2023). To test whether our
data reflect a similar pattern, we calculated the median response times of the main task for each
participant and categorized trials as either above or below this median RT per subject and
experimental condition. RTs were calculated as the onset of the first movement of the response
knob. We then averaged the contralateral minus ipsilateral time-frequency data per subject (for
details on TF calculation and electrode selection see Methods section, Analyses, Time
Frequency), and compared these differences between the above- and below-median RT trials
using a CBPT. Our results showed no significant cluster in this comparison (Figure S3 A;B).
We further interpret these results in the discussion section.
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Figure S3. Mu/Beta Lateralization Comparison Between Slow and Fast Response trials. Figures
show contra-minus-ipsilateral time-frequency (TF) decomposition over C3, C4, CP3, and CP4 channels
relative to the response hand. The 0-500 ms box indicates the stimulus presentation window.
A) Contralateral TF suppression for slow response trials, calculated from trials with response times
above the subject-specific and condition-specific medians for the memory task. B) Contralateral TF
suppression for fast response trials, calculated from trials with response times below the subject-specific
and condition-specific medians for the memory task. Our CBPT comparison revealed no significant
difference between the fast and slow trials.
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Text S4: Discontinuation of mu/beta lateralization by the interference
Our data supported the idea by Gresch et al. (2025) and Zickerick et al. (2021)that attention is
redirected to the primary task immediately after having responded to an interrupting task. We
further explored whether response hand selection for the main task is prioritized immediately
following the interference task. To test this idea, we compared the contralateral mu/beta
suppression for the visuomotor and motor interference conditions combined across the entire
trial period. As Figure S4A shows, during the interference period, mu/beta suppression is
interrupted and then recovers (cluster size: 12699, dmax = 1.737, dmean = .803).The onset time
of this recovery corresponds to the response time of the interference task (Mean = 644.49ms,
SD = 105.068ms), as indicated by the red line in Figure S4A. This indicates that once the
interference task is done, the motor codes of the main task are prioritized immediately.
Furthermore, we conducted the same comparison time-locked to the secondary task response
(Figure S4B). In line with our previous findings, this analysis showed that the re-emergence of
motor planning for the main task was time-locked to the secondary task response following the

interruption (cluster size: 3870, dmax = 1.609, dmean = .742).
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Figure S4. Contralateral Mu/Beta Suppression; Visuomotor and Motor Interference. The black
box on the left represents the stimulus presentation window (0-500ms), while the larger black box on
the right indicates the interference time window (1400-2900ms). Marked areas with black lines show
the significant clusters. A) The red line on the figure represents the average RT of the interfering task.
Recovery of the mu/beta lateralization following the interference corresponds to the average response
time of the interference task. B) Black line (time point 0) indicates the secondary task response. The
response-locked analysis shows the re-emergence of the contralateral mu/beta suppression is time-
locked to the secondary task response.
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